Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of chemical and microbiological characteristics of meat products treated by radiation

https://doi.org/10.26896/1028-6861-2021-87-6-5-13

Abstract

Radiation treatment of food products carried out to increase their shelf life can result in chemical transformations initiated by free radicals. Volatile compounds (alcohols, aldehydes, ketones, etc.) formed, in particular, as a result of lipid oxidation, impair the organoleptic properties of products. Method of gas chromatography-mass spectrometry (GC-MS) makes it possible to identify the fact of food processing by detection of volatile marker compounds: in the case of meat products, the existing standard brings under regulation detection of 2-alkylcyclobutanones, however, the products with a reduced fat content, such as turkey and chicken, require an alternative marker. The results of GKh-MS study revealed the dependence of microbiological parameters and the content of various volatile organic substances in chilled turkey meat on the dose of electron radiation. It is shown that the total amount of alcohols, ketones and aldehydes (11 compounds) decreases exponentially with an increase in the absorbed dose. An increase in the radiation dose leads to a higher content of carbonyl compounds (aldehydes and acetone), which results in a specific taste and smell of the irradiated products. At the same time, the acetone concentration increases linearly with the absorbed dose, which makes it possible to use acetone as a potential marker of the degree of irradiation of low-fat meat products. Irradiation in the «working» doses (0.5 – 1 kGy) significantly suppresses the pathogenic microflora and keeps the organoleptic properties of the product.

About the Authors

U. A. Bliznyuk
M. V. Lomonosov Moscow State University, Department of Physics
Russian Federation

Ul’yana A. Bliznyuk

1 bld. 2 Leninskye Gory, Moscow, 119991



V. M. Avdyukhina
M. V. Lomonosov Moscow State University, Department of Physics
Russian Federation

Valentina M. Avdyukhina

1 bld. 2 Leninskye Gory, Moscow, 119991



P. Yu. Borshchegovskaya
M. V. Lomonosov Moscow State University, Department of Physics

Polina Yu. Borshchegovskaya

1 bld. 2 Leninskye Gory, Moscow, 119991



T. A. Bolotnik
M. V. Lomonosov Moscow State University, Department of Chemistry

Timofey A. Bolotnik

1 bld. 3 Leninskye Gory, Moscow, 119991



V S. Ipatova
M. V. Lomonosov Moscow State University, Department of Physics; M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics
Russian Federation

Viktoriya S. Ipatova

1 bld. 2 Leninskye Gory, Moscow, 119991

1 bld. 2 Leninskye Gory, Moscow, 119991



I A. Rodin
M. V. Lomonosov Moscow State University, Department of Chemistry; I. M. Sechenov First Moscow State Medical University

Igor A. Rodin

1 bld. 3 Leninskye Gory, Moscow, 119991

8 bld. 2 Trubetskaya ul., Moscow, 119991



Yu. A. Ikhalainen
M. V. Lomonosov Moscow State University, Department of Chemistry

Yury A. Ikhalainen

1 bld. 3 Leninskye Gory, Moscow, 119991



F. R. Studenikin
M. V. Lomonosov Moscow State University, Department of Physics; M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Feliks R. Studenikin

1 bld. 2 Leninskye Gory, Moscow, 119991

1 bld. 2 Leninskye Gory, Moscow, 119991



A. P. Chernyaev
M. V. Lomonosov Moscow State University, Department of Physics; M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Aleksandr P. Chernyaev

1 bld. 2 Leninskye Gory, Moscow, 119991

1 bld. 2 Leninskye Gory, Moscow, 119991



O. V. Shinkarev
M. V. Lomonosov Moscow State University, Department of Physics

Oleg V. Shinkarev

1 bld. 2 Leninskye Gory, Moscow, 119991



D. S. Yurov
I. M. Sechenov First Moscow State Medical University

Dmitry S. Yurov

8 bld. 2 Trubetskaya ul., Moscow, 119991



References

1. Codex Alimentarius. Irradiated food. Joint FAO/WHO Food Standards Program. — Moscow: Ves’ Mir, 2007. — 21 p. [in Russian].

2. Alimov A. S. Practical Application of Electron Accelerators / Preprint SINP MGU No. 2011-13/877 [in Russian].

3. Statement Summarizing the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels / EFSA J. 2011. Vol. 9. N 4. 2107. DOI: 10.2903/j.efsa.2011.2107

4. CAC, 2003. CODEX STAN 106–1983, Rev. 1-2003. Codex Alimentarius Commission. General Standard for Irradiated Foods. Codex Alimentarius, FAO/WHO, Rome.

5. Chernyaev A. P., Varzar’ S. M., Belousov A. V., et al. Prospects of Development of Radiation Technologies in Russia / Phys. At. Nucl. 2019. Vol. 82. N 5. P. 513 – 527. DOI: 10.1134/S1063778819040070

6. Chmielewski A. G., Migdał W. Radiation decontamination of herbs and spices / Nukleonika. 2005. Vol. 50. N 4. P. 179 – 184.

7. Sadecka J. Irradiation of Spices — a Review / Czech J. Food Sci. 2018. Vol. 25. N 5. P. 231 – 242. DOI: 10.17221/684-CJFS

8. Chernyaev A. P., Avdyukhina V. M., Bliznyuk U. A., et al. Study of the Effectiveness of Treating Trout with Electron Beam and X-ray Radiation / Bull. Russ. Acad. Sci. Phys. 2020. Vol. 84. N 4. P. 385 – 390. DOI: 10.3103/S106287382004005X

9. Badr H. M. Use of irradiation to control food-borne pathogens and extend the refrigerated market life of rabbit meat / Meat Sci. 2004. Vol. 67. N 4. P. 541 – 548. DOI: 10.1016/j.meatsci.2003.11.018

10. Jayathilakan K., Sultana K., Pandey M. C. Radiation Processing: An Emerging Preservation Technique for Meat and Meat Products / Defence Life Sci. J. 2017. Vol. 2. N 2. P. 133 – 141. DOI: 10.14429/dlsj.2.11368

11. Gorbunova N. A. Prospects for Using the Technology of Ionizing Radiation of Meat and Meat Products / Myas. Industriya. 2016. N 9. P. 21 – 23 [in Russian].

12. Aleksieva K., Yordanov N. D. Various approaches in EPR identification of gamma-irradiated plant foodstuffs: A review / Food Res. Int. 2018. Vol. 105. P. 1019 – 1028. DOI: 10.1016/j.foodres.2017.11.072

13. Timakova R. T., Tikhonov S. L., Tararkov A. N., Vakhnin D. O. EPR Spectroscopy of Spices / Vestnik VGUIT. 2016. N 4. P. 187 – 193. DOI: 10.20914/2310-1202-2016-4-187-193 [in Russian].

14. Kameya H., Todoriki S., Ukai M., et al. Relaxation behaviors of free radicals from y-irradiated black pepper using pulsed EPR spectroscopy / Appl. Magn. Reson. 2012. Vol. 42. N 2. P. 153 – 159. DOI: 10.1007/s00723-011-0305-6

15. Polovka M., Brezová V., Šimko P. EPR spectroscopy: A tool to characterize gamma-irradiated foods / J. Food Nutr. Res. (Bratislava, Slovakia). 2007. Vol. 46. N 2. P. 75 – 83.

16. Drouza C., Spanou S., Keramidas A. D. EPR Methods Applied on Food Analysis / Topics From EPR Research. 2018. DOI: 10.5772/intechopen.79844

17. Chauhan S. K., Kumar R., Nadanasabapathy S., Bawa A. S. Detection Methods for Irradiated Foods / Compr. Rev. Food Sci. Food Saf. 2009. Vol. 8. P. 4 – 16. DOI: 10.1111/j.1541-4337.2008.00063.x

18. Podkopaev D. O. Method of EPR-Spectrometry for Research of Biological objects and a Foodstuff / Pishch. Promyshl. 2010. N 7. P. 33 – 34 [in Russian].

19. Sudheesh C., Sunooj K., George J., et al. Impact of γ-irradiation on the physico-chemical, rheological properties and in vitro digestibility of kithul (Caryota urens) starch; a new source of nonconventional stem starch / Radiat. Phys. Chem. 2019. Vol. 162. P. 54 – 65. DOI: 10.1016/j.radphyschem.2019.04.031

20. Kavitake D., Techi M., Abid U. K., et al. Effect of y-irradiation on physico-chemical and antioxidant properties of galactan exopolysaccharide from Weissella confusa KR780676 / J. Food Sci. Technol. 2019. Vol. 56. N 4. P. 1766 – 1774. DOI: 10.1007/s13197-019-03608-w

21. Nisar M. F., Arshad M. S., Yasin M., et al. Influence of irradiation and moringa leaf powder on the amino acid and fatty acid profiles of chicken meat stored under various packaging materials / J. Food Process. Preserv. 2019. Vol. 43. N 1. P. e14166. DOI: 10.1111/jfpp.14166

22. Bhoir S., Jhaveri M., Chawla S. P. Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat / J. Food Process Eng. 2019. Vol. 42. N 6. P. e13254. DOI: 10.1111/jfpe.13254

23. Arshad M. S., Amjad Z., Yasin M., et al. Quality and stability evaluation of chicken meat treated with gamma irradiation and turmeric powder / Int. J. Food Prop. 2019. Vol. 22. N 1. P. 153 – 171. DOI: 10.1080/10942912.2019.1575395

24. Nam H.-A., Ramakrishnan S. R., Kwon J.-H. Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage / Food Chem. 2019. Vol. 286. P. 338 – 345. DOI: 10.1016/j.foodchem.2019.02.009

25. Ross C. F., Smith D. M. Use of Volatiles as Indicators of Lipid Oxidation in Muscle Foods / Comp. Rev. Food Sci. Food Saf. 2006. Vol. 5. P. 18 – 25. DOI: 10.1111/j.1541-4337.2006.tb00077.x

26. Vaghela K. D., Chaudhary B. N., Mehta B. M., et al. Comparative appraisal of Kreis methods for the assessment of incipient rancidity in ghee / Br. Food J. 2018. Vol. 120. N 1. P. 240 – 250. DOI: 10.1108/BFJ-04-2017-0235

27. Zeb A., Ullah F. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances (TBARS) in fried fast foods / J. Anal. Methods Chem. 2016. N 1. Article ID: 9412767. DOI: 10.1155/2016/9412767

28. Gladilovich V. D., Podol’skaya E. P. Possibilities of application of the GC-MS method (Review) / Nauch. Pribor. 2010. Vol. 20. N 4. P. 36 – 49 [in Russian].

29. Gaspar E. M., Santana J. C., Santos P. M., et al. Gamma irradiation of clove: level of trapped radicals and effects on bioactive composition / J. Sci. Food Agric. 2019. Vol. 99. N 4. P. 1668 – 1674. DOI: 10.1002/jsfa.9351

30. Chiappinelli A., Mangiacotti M., Tomaiuolo M., et al. Identification of X-ray-irradiated hazelnuts by electron spin resonance (ESR) spectroscopy / Eur. Food Res. Technol. 2019. Vol. 245. P. 2323 – 2329. DOI: 10.1007/s00217-019-03349-2

31. Tomaiuolo M., Mangiacotti M., Trotta G., et al. Identification of X-ray irradiated walnuts by ESR spectroscopy / Radiat. Phys. Chem. 2018. Vol. 150. P. 35 – 39. DOI: 10.1016/j.radphyschem.2018.04.007

32. Alberti A., Chiaravalle E., Fuochi P., et al. Irradiated bivalve mollusks: Use of EPR spectroscopy for identification and dosimetry / Radiation Physics and Chemistry. 2011. Vol. 80. N 12. P. 1363 – 1370. DOI: 10.1016/j.radphyschem.2011.08.002

33. Bercu V., Negut C. D., Duliu O. G. Irradiation free radicals in freshwater crayfish Astacus leptodactylus Esch investigated by EPR spectroscopy / Radiat. Phys. Chem. 2017. Vol. 133. P. 45 – 51. DOI: 10.1016/j.radphyschem.2016.12.008

34. Song B.-S., Kim B.-K., Yoon Y.-M., et al. Identification of red pepper powder irradiated with different types of radiation using luminescence methods: A comparative study / Food Chem. 2016. Vol. 200. P. 293 – 300. DOI: 10.1016/j.foodchem.2016.01.050

35. Chernyaev A. P., Bliznyuk U. A., Borshchegovskaya P. Yu., et al. 1 MeV Electron Irradiation of Chilled Trout to Control its Microbiological Parameters / Yadern. Fiz. Inzh. 2018. Vol. 9. N 1. P. 89 – 93. DOI: 10.1134/S2079562917060069 [in Russian].

36. Chernyaev A. P., Avdyukhina V. M., Bliznyuk U. A., et al. Using Low-Energy Electron Beams for Processing Chilled Turkey Meat. Optimization of Exposure Parameters / Naukoem. Tekhnol. 2020. Vol. 21. N 1. P. 40 – 49. DOI: 10.18127/j19998465-202001-07 [in Russian].


Review

For citations:


Bliznyuk U.A., Avdyukhina V.M., Borshchegovskaya P.Yu., Bolotnik T.A., Ipatova V.S., Rodin I.A., Ikhalainen Yu.A., Studenikin F.R., Chernyaev A.P., Shinkarev O.V., Yurov D.S. Determination of chemical and microbiological characteristics of meat products treated by radiation. Industrial laboratory. Diagnostics of materials. 2021;87(6):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-6-5-13

Views: 803


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)