Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of isothermal decomposition of austenite using methods of mathematical modeling

https://doi.org/10.26896/1028-6861-2021-87-6-25-32

Abstract

The capabilities of the numerical simulation of technological processes are limited by the accuracy and efficiency of determining the properties of materials which continuously change with repeated heating and cooling. The parameters of structural transformations are the principal factors affecting the properties of alloyed steels. We present a method for determining the parameters of formulas describing C-shaped curves of experimental diagrams of isothermal decomposition of austenite. The proposed approach makes it possible to reconstruct the entire C-shaped curve using a relatively small fragment near the «nose» (by three points). Joint processing of a series of curves provided determination of the parameters of ferritic, pearlitic and bainitic transformation kinetics. However, it is important to take into account the features of the diffusion decomposition of austenite. For example, ferrite and pearlite are formed in overlapping temperature ranges and have similar mechanical properties, but their combining into a single ferrite-pearlite structure complicates the construction of a mathematical model of transformation. The bainitic transformation has a transient character from diffusion to diffusionless one. As for the transformation temperature range, the limiting degree is a function of temperature (as in the case of martensitic transformation). It was shown that for ferrite-pearlite transformation the best results are obtained by the Kolmogorov – Avrami equation, and for the bainitic one — by the Austin – Rickett equation modified with allowance for an incomplete transformation.

About the Author

A. S. Kurkin
N. É. Bauman Moscow State Technical University
Russian Federation

Alexey S. Kurkin

5, 2-ya Baumanskaya ul., Moscow, 105005



References

1. Militzer M. Phase Field Modelling of Phase Transformations in Steels. — Sawston (UK): Woodhead Publishing, 2012. P. 405 – 432.

2. Kundu S., Dutta M., Ganguly S., Chandra S. Prediction of Phase Transformation and Microstructure in Steel Using Cellular Automaton Technique / Scripta Mater. 2004. Vol. 50. N 6. P. 891 – 895. DOI: 10.1016/j.scriptamat.2003.12.007

3. Tahimi A., Barbe F., Taleb L., Quey R., Guillet A. Evaluation of Microstructure-Based Transformation Plasticity Models from Experiments on 100C6 Steel / Comput. Mater. Sci. 2012. Vol. 52. N 1. P. 55 – 60. DOI: 10.1016/j.commatsci.2011.01.052

4. Maisuradze M. V., Yudin Y. V., Ryzhkov M. A. Numerical Simulation of Pearlitic Transformation in Steel 45KH5MF / Met. Sci. Heat Treat. 2015. Vol. 56. N 9 – 10. P. 512 – 516. DOI: 10.1007/s11041-015-9791-8

5. Kolmogorov A. N. To the statistical theory of crystallization of metals / Izv. AN SSSR. Ser. Mat. 1937. N 3. P. 355 – 359 [in Russian].

6. Azghandi S., Ahmadabadi V., Raoofian I., Fazeli F., Zare M., Zabett A., Reihani H. Investigation on Decomposition Behavior of Austenite under Continuous Cooling in Vanadium Microalloyed Steel (30MSV6) / Mater. Des. 2015. Vol. 88. P. 751 – 758. DOI: 10.1016/j.matdes.2015.09.046

7. Jia T., Militzer M., Liu Z. General Method of Phase Transformation Modeling in Advanced High Strength Steels / ISIJ Int. 2010. Vol. 50. N 4. P. 583 – 590. DOI: 10.2355/isijinternational.50.583

8. Yudin Y. V., Maisuradze M. V., Kuklina A. A. Describing the isothermal bainitic transformation in structural steels by a logistical function / Steel in Translation. 2017. Vol. 47. N 3. P. 213 – 218 [in Russian]. DOI: 10.3103/S0967091217030160

9. Yudin Y. V., Farber V. M. Characteristic Features of the Kinetics of Decomposition of Supercooled Austenite of Alloy Steels in the Pearlite Range / Met. Sci. Heat Treat. 2001. Vol. 43. N 1 – 2. P. 45 – 50. DOI: 10.1023/A:1010470206231

10. Boyadjiev I. I., Thomson P. F., Lam Y. C. Computation of the Diffusional Transformation of Continuously Cooled Austenite for Predicting the Coefficient of Thermal Expansion in the Numerical Analysis of Thermal Stress / ISIJ Int. 1996. Vol. 36. N 11. P. 1413 – 1419. DOI: 10.2355/isijinternational.36.1413

11. Sun N., Liu X., Lu K. An Explanation to the Anomalous Avrami Exponent / Scripta Mater. 1996. Vol. 34. N 8. P. 1201 – 1207. DOI: 10.1016/1359-6462(95)00657-5

12. Yudin Y. V., Maisuradze M. V., Kuklina A. A., Lebedev P. D. Application of Computer Simulation to Study the Features of the Austenite Isothermal Transformation in Steels / XIX International sci.-tech. conf. «The Ural school-seminar of metal scientists-young researchers». — KnE Engineering, 2019. P. 1 – 10. DOI: 10.18502/keg.v1i1.4384

13. Austin J. B., Rickett R. L. Kinetics of the decomposition of austenite at constant temperature / Trans. Am. Inst. Mining Metallurg. Petrol. Eng. 1939. Vol. 135. P. 396 – 443.

14. Kurkin A. S. Mathematical investigation of the phase transformations kinetics of alloyed steel / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 12. P. 25 – 32 [in Russian]. DOI: 10.26896/1028-6861-2019-85-12-25-32

15. Starink M. J. Kinetics of the decomposition of austenite at constant temperature / J. Mater. Sci. 1997. Vol. 32. P. 397 – 415.

16. Kurkin A. S. Numerical modeling of the kinetics of bainitic transformation of alloyed steels / Svarka Diagn. 2019. N 6. P. 20 – 25 [in Russian].

17. Schastlivtsev V. M., Mirzayev D. A., Yakovleva I. L., Okishev K. Yu., Tabatchikova T. I., Khlebnikova Yu. V. Perlite in carbon steels. — Yekaterinburg: UrO RAN, 2006. — 312 p. [in Russian].

18. Atlas of Time-Temperature Diagrams for Irons and Steels / Edited by G. F. Vander Voort. — ASM International, 1991. — 766 p.

19. Kurkin A. S., Bobrinskaya V. Yu. The austenite decomposition diagrams processing to build the complete C-shaped curves / Svarka Diagn. 2019. N 2. P. 32 – 37 [in Russian].

20. Koistinen D. P., Marburger R. E. A general equation prescribing the extent of the autenite-martensite transformation in pure iron-carbon alloys and plain carbon steels / Acta Metallica. 1959. N 7. P. 59 – 60.


Review

For citations:


Kurkin A.S. Study of isothermal decomposition of austenite using methods of mathematical modeling. Industrial laboratory. Diagnostics of materials. 2021;87(6):25-32. https://doi.org/10.26896/1028-6861-2021-87-6-25-32

Views: 511


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)