

Determination of the steel axial stresses in memory mode by the exponential law of magnetoelastic demagnetization
https://doi.org/10.26896/1028-6861-2021-87-6-54-62
Abstract
Magnetic and magnetoelastic methods of stress control are based on changes in the magnetic parameters of steel upon deformation. However, the magnetic properties of different steel grades, and even of the same grade in different heats may differ noticeably. The inhomogeneity of the magnetic and magnetoelastic properties of steel attributed to variations in the chemical composition, as well as in the modes of rolling and heating during manufacture affects the accuracy of stress control being a common disadvantage of magnetoelastic methods used for monitoring the stress-strain state of steel structures. The goal of the study is to consider the possibility of monitoring uniaxial mechanical stresses in steel structures in the «magnetoelastic memory» mode, based on H(σ) dependence of the strength of magnetic field of scattering local remanent magnetization of steel on the uniaxial stresses. The exponential function is shown to provide a satisfactory description of the experimental dependence of the strength of the magnetic field of scattering of the permanently magnetized 17G1S and 15KhSND steels on the stresses induced in steels by tension, compression, and impact. To improve the accuracy of the control, we propose to introduce the magnetoelastic sensitivity of steel (MSS) into the accepted form of the exponential dependence H(σ). A way to MSS determination not only on laboratory samples under ideal conditions, but directly on the construction under control (which reduces the errors of the control attributed to variations in the magnetic and magnetoelastic properties of steels) is considered. To implement the proposed procedure, prototypes of the devices for static and dynamic local loading of metal structure elements have been developed and manufactured. The devices have undergone a pilot test when monitoring the stress-strain state of the load-bearing beams of an automobile overpass. Using the developed devices, a local dosed loading with a hemispherical indenter was carried out through shock or static loading of a pre-magnetized region of the structure resulted in a decrease in the intensity of the magnetic field of scattering. A procedure for monitoring uniaxial stresses in steel structure elements by the method of magnetoelastic «memory» is proposed taking into account the measured magnetoelastic sensitivity of their material.
About the Authors
V. F. NovikovRussian Federation
Vitaly F. Novikov
38, Volodarsky ul., Tyumen, 625000
S. M. Kulak
Russian Federation
Sergey M. Kulak
38, Volodarsky ul., Tyumen, 625000
A. S. Parakhin
Russian Federation
Alexander S. Parakhin
38, Volodarsky ul., Tyumen, 625000
References
1. Ponomarev V. P., Travush V. I., Bondarenko V. M., Eremin K. I. On the need for a systematic approach to scientific research in the field of integrated safety and prevention of accidents in buildings and structures / Electronic journal «Prevention of accidents in buildings and structures». 2012. http:// pamag.ru/pressa/bss-pse. P. 1 – 9 [in Russian].
2. Maystrenko I. Yu., Ovchinnikov I. I., Ovchinnikov I. G., Kokodeev A. V. Accidents and destruction of bridge structures, analysis of their causes. Part 1 / Internet journal «Transport structures». 2017. Vol. 4. N 4. https://t-s.today/PDF/13TS417.pdf. DOI: 10.15862/13TS417 [in Russian].
3. Dubov A. A., Demin E. A., Milyaev A. I., Steklov O. A. Experience in monitoring the stress-strain state of gas pipelines using the metal magnetic memory method in comparison with traditional methods and means of stress monitoring / Kontrol. Diagn. 2002. N 4. P. 53 – 56 [in Russian].
4. Zhukov S. V., Kopitsa N. N. Investigation of mechanical stress fields in metal structures with «Complex-2» devices. Sat. scientific. Proceedings of the department «Special problems of transport» / Ross. Akad. Transporta. 1998. N 3. P. 214 – 222 [in Russian].
5. Novikov V. F., Yatsenko T. A., Bakharev M. S. Dependence of the coercive force of low carbon steels on uniaxial stresses (part 2) / Defektoskopiya. 2002. N 4. P. 11 – 17 [in Russian].
6. Novikov V. F., Zakharov V. A., Ulyanov A. I., Sorokina S. V., Kudryashov M. E. The effect of biaxial elastic deformation on the coercive force and local remanent magnetization of structural steels / Defektoskopiya. 2010. N 7. P. 59 – 68 [in Russian].
7. Novikov V. F., Ustinov V. P., Radchenko A. V., Muratov K. R., Kulak S. M., Sorokina S. V. On stress control in a complexly loaded steel structure by the method of magnetoelastic demagnetization / Defektoskopiya. 2016. N 6. P. 71 – 76 [in Russian].
8. Novikov V. F., Vazhenin Yu. I., Bakharev M. S., Kulak S. M., Muratov K. R. Diagnostics of places with increased destructibility of the pipeline. 2nd edition. — Moscow: OOO «Nedra — Biznes-Tsentr», 2009. — 200 p. [in Russian].
9. Kulak S. M., Novikov V. F. Determination of mechanical stresses in steel by the method of magnetoelastic demagnetization / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 7. P. 56 – 59 [in Russian].
10. Kulak S. M., Novikov V. F., and Baranov A. V. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method. Transport and Storage of Hydrocarbons IOP Publishing IOP Conf. Series: Materials Science and Engineering. 2016. Vol. 154. P. 012004. DOI: 10.1088/1757-899X/154/1/012004
11. RF Pat. 2326356, MPK3 G01L 1/12. Magnetic method for determining axial mechanical stresses of a complexly loaded magnetics / Kulak S. M., Novikov V. F.; patentee Gosudarstvennoe obrazovatel’noe uchrezhdenie vy’shego professional’nogo obrazovaniya «Tumenskii gosudarstvenny’i neftegazovy’i universitet. — N 2006142118/28; appl. 28.11.06; publ. 10.06.08, Byull. N 16 [in Russian].
12. Kulak S. M., Novikov V. F., Probotyuk V. V., Vatsenkov S. M., Fursov E. S. Magnetic testing of stressed state of hydrotested gas-separator wall / Russ. J. Nondestruct. Testing. 2019. Vol. 55. N 3. P. 225 – 232. DOI: 10.1134/S0130308219030072
13. Kostryukova N. K., Novikov V. F., Kostryukov O. M., Ershov S. P. Determination of the stressed state of pipe metal under the influence of local fault zones / Izv. Vuzov. Neft’ Gaz. 2001. N 1. P. 80 – 85 [in Russian].
14. Novikov V. F., Bakharev M. S., Sorokina S. V. Non-destructive control of snow and wind loads in the mode of magnetoelastic memory / Stroit. Mekh. Inzh. Konstr. Sooruzh. 2008. N 3. P. 51 – 54 [in Russian].
15. USSR Inventor’s certificate 549732, MKI2 G01N 27/86. Method for non-destructive testing of magnetic materials / L. S. Pravdin, N. M. Rodigin, Yu. M. Akulov. — N 1895501/28; appl. 20.03.73; publ. 05.03. 77. publ. 09 [in Russian].
16. Pravdin L. S., Burtseva V. A. Peculiarities of changes in magnetization and magnetostriction from small increments of elastic stresses and magnetic field on the example of low-carbon steel / Defektoskopiya. 1992. N 4. P. 29 – 38 [in Russian].
17. Novikov V. F., Nassonov V. V., Gorkunov E. S., Nevzorova E. G., Fateev I. I. On the stability of the remanently magnetized state to single applied stresses. — In collection: Problems of development of oil and gas resources of Western Siberia. — Tyumen: Tyumenskii indusrial’nyi institut im. Leninskogo komsomola. 1989. P. 91 – 96 [in Russian].
18. Novikov V. F., Bakharev M. S. Magnetic diagnostics of mechanical stresses in ferromagnets. — Tyumen: Vektor Buk, 2001. — 220 p. [in Russian].
19. Novikov V. F., Diaghilev V. F., Bakharev M. S., Nassonov V. V., Prilutsky V. V. Regularities of magnetoelastic changes in the remanent magnetization of steels / Zavod. Lab. Diagn. Mater. 2006. Vol. 72. N 6. P. 34 – 37 [in Russian].
20. Novikov V. F., Bakharev M. S., Orel A. A. About magnetoelastic memory of high-chromium steel / Defektoskopiya. 2001. N 10. P. 20 – 26 [in Russian].
21. Kalitkin N. N. Numerical methods. — Moscow: Nauka, 1978. — 508 p. [in Russian].
22. Parakhin A. S. Computer in laboratory practicum: a tutorial. — Kurgan: Izd. Kurgan. Gos. Univ., 2000. — 109 p. [in Russian].
23. Novikov V. F., Kulak S. M., Andreev V. O. About control of the stressed — deformed state of steel bridge structures (bridge) by the method of magnetoelastic demagnetization / Stroit. Mekh. Raschet Sooruzh. 2020. N 4. P. 3 – 7 [in Russian].
Review
For citations:
Novikov V.F., Kulak S.M., Parakhin A.S. Determination of the steel axial stresses in memory mode by the exponential law of magnetoelastic demagnetization. Industrial laboratory. Diagnostics of materials. 2021;87(6):54-62. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-6-54-62