

Determination of caffeine, catechins and gallic acid in black tea of different geographical origin
https://doi.org/10.26896/1028-6861-2021-87-9-12-19
Abstract
We present the results of studying and selectiing optimal conditions for the determination of caffeine, catechins and gallic acid in black tea by the method of micellar electrokinetic chromatography. The choice of analytes is determined by the fact that they form the main consumer qualities of tea and, due to their antioxidant properties, have a positive effect on human health. Optimization of the electrophoretic detemination of seven catechins, caffeine and gallic acid in black tea was carried out using the method of ex periment design. Optimized conditions — 25 mM phosphate buffer solution with pH 7.4, containing 30 mM SDS and 5% ethyl alcohol — provided a satisfactory resolution of all electrophoretogram peaks, the analysis time was 25 minutes, and the current in the system did not exceed 120 pA. After the assessment of the metrological characteristics of the proposed method the standard deviation of the determination of analytes did not exceed 15%. The samples of black tea from Ceylon, Chinese, Assamese, Indian, Kenyan and Krasnodar regions of growth were analyzed, and an array of data on the contents of the analytes under study was formed. Discriminant analysis was used to develop a model and obtain classification functions for six tea groups from different regions of the world. Proceeding from the obtained classification functions, a scatter diagram of canonical values was constructed, which showed that the samples of Krasnodar and Chinese tea were localized from all the studied groups. Indian, Assamese and Ceylon teas formed a single area with close to the Chinese tea group. The correctness of the model was checked and revealed the total predictive force about 92%. It is shown that the content of catechins, gallic acid and caffeine are suitable markers for the classification of black tea samples from different regions of origin.
About the Authors
K. S. GushchaevaRussian Federation
Kristina S. Gushchaeva
149, Stavropol’skaya ul., Krasnodar, 350040
T. G. Tsyupko
Russian Federation
Tatyana G. Tsyupko
149, Stavropol’skaya ul., Krasnodar, 350040
O. B. Voronova
Russian Federation
Olga B. Voronova
149, Stavropol’skaya ul., Krasnodar, 350040
L. S. Malyukova
Russian Federation
Lyudmila S. Malyukova
2/28, Yana Fabritiusa ul., Sochi, 354002
References
1. Zhang L., Cao Q.-Q., Granato D., et al. Association between chemistry and taste of tea: A review / Trends Food Sci. Technol. 2020. Vol. 101. P 139 - 149. DOI: 10.1016/j.tifs.2020.05.015
2. Yan Z., Zhong Y., Duan Y., et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits / Animal Nutrition. 2020. Vol. 6. N 2. P 115 -123. DOI: 10.1016/j.aninu.2020.01.001
3. Deka H., Barman T., Dutt J., et al. Catechin and caffeine content of tea (Camellia sinensis L.) leaf significantly differ with seasonal variation: A study on popular cultivars in North East India / J. Food Compos. Anal. 2021. Vol. 96. P. 1 - 10. DOI: 10.1016/j.jfca.2020.103684
4. Mareeva D. O., Tsypko T. G., Milevskaia V. V., Temerdashev A. Z. HPLC determination and estimation of gallicacid, catechin, caffeine and epicatechin content in black tea extracts / Analit. Kontrol’. 2020. Vol.19. N 4. P. 323-330 [in Russian]. DOI: 10.15826/analitika.2015.19.4.011
5. Yi T., Zhu L., Peng W., et al. Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis / LWT Food Sci. Technol. 2015. Vol. 62. N1.1! 194-201. DOI: 10.1016/j.lwt.2015.01.003
6. Kartsova L. A., Deev V. A., Bessonova E. A., et al. Determination of polyphenol antioxidants in the samples of green tea. The characteristic chromatographic profiles / Analit. Kontrol`. 2019, Vol. 23. N 3. P 377-385 [in Russian]. DOI: 10.15826/analitika.2019.23.3.010
7. Nian B., Chen L., Yi C., et al. A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts / Electrophoresis. 2019 Vol. 40. N 21. P 2837- 2844. DOI: 10.1002/elps.201900154
8. Kartsova L. A., Alekseeva A. V, Ganzha O. V. Possibilities and limitations of different modes of capillary electrophoresis for the quantitative determination of catechols and caffeine in black and green tea / J. Anal. Chem. 2010. Vol. 65. N 2. P 209-214. DOI: 10.1134/S1061934810020188
9. Weiss D. J., Anderton C. R. Determination of catechins in matcha green tea by micellar electrokinetic chromatography / J. Chromatogr. A. 2003. Vol. 1011. P. 173-180. DOI: 10.1016/S0021-9673(03)01133-6
10. Liu C.-M., Chen C.-Y, Lin Y.-W. Estimation of tea catechin levels using micellar electrokinetic chromatography: A quantitative approach / Food Chem. 2014. Vol. 150. P. 145 - 150. DOI: 10.1016/j.foodchem.2013.10.140
11. Lopez M. del M. C., Vilarino J. M. L., Rodriguez M. V. G., Losada L. F. B. Development, validation and application of Micellar Electrokinetic Capillary Chromatography method for routine analysis of catechins, quercetin and thymol in natural samples / Microchem. J. 2011. N 99. P 461- 469. DOI: 10.1016/j.microc.2011.06.023
12. Hsiao H.-Y., Chen R., Cheng T.-J. Determination of tea fermentation degree by a rapid micellar electrokinetic chromatography / Food Chem. 2010. Vol. 120. N 2. P. 632-636. DOI: 10.1016/j.foodchem.2009.10.048
13. Stach D., Schmitz O. J. Decrease in concentration of free catechins in tea over time determined by micellar electrokinetic chromatography / J. Chromatogr. A. 2001. Vol. 924. N 1- 2. P 519 - 522. DOI: 10.1016/S0021-9673(01)00903-7
14. Aucampa J. P., Harab Y., Apostolidesa Z. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography / J. Chromatogr. A. 2000. Vol. 876. P. 235- 242. DOI: 10.1016/j.foodchem.2013.10.140
15. Peres R., Tonin F., Tavares M., Rodriguez-Amaya D. Determination of catechins in green tea infusions by reduced flow micellar electrokinetic chromatography / Food Chem. 2011. Vol. 127. N 2. P 651- 655. DOI: 10.1016/j.foodchem.2010.12.104
16. Fiori J., Pasquini B., Caprini C., et al. Chiral analysis of theanine and catechins in characterization of green tea by cyclodextrin-modified micellar electrokinetic chromatography and high performance liquid chromatography / J. Chromatogr. A. 2018. Vol. 1562. P. 115-122. DOI: 10.1016/j.chroma.2018.05.063
17. Finger A., Kuhr S., Engelhardt U. H. Chromatography of tea constituents / J. Chromatogr. A. 1992. Vol. 624. N 2. P 293-315. DOI: 10.1016/0021-9673(92)85685-M
18. Ballus C. A., Meinhart A. D., Bruns R. E., Godoy H. T. Use of multivariate statistical techniques to optimize the simulta neous separation of 13 phenolic compounds from extra-virgin olive oil by capillary electrophoresis / Talanta. 2011. Vol. 83. N 4. P. 1181-1187. DOI: 10.1016/j.talanta.2010.07.013
Review
For citations:
Gushchaeva K.S., Tsyupko T.G., Voronova O.B., Malyukova L.S. Determination of caffeine, catechins and gallic acid in black tea of different geographical origin. Industrial laboratory. Diagnostics of materials. 2021;87(9):12-19. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-9-12-19