Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nanoscale materials in the composition of biosensors for the determination of amitriptyline

https://doi.org/10.26896/1028-6861-2021-87-9-20-29

Abstract

Biosensor devices including hybrid nanostructures as modifiers of transducer surfaces meet current requirements for the methods of research and determination of drugs, including antidepressants. The fea­tures of amperometric monoamine oxidase biosensors based on printed carbon electrodes modified with nanocomposite compositions C60 / cobalt nanoparticles/amino derivative of polyether polyol of the second generation/chitosan nanocomposite structures used for the detection of tricyclic antidepressant amitriptyline are considered. The choice of the best modifier was made proceeding from the data of transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry. When developing the biosensor, conditions for depositing the composite composition of cobalt nanoparticles/amino derivative of polyether polyol on the electrode surface were varied: electrochemical deposition, sequential layer-by-layer deposition, and deposition of the mixture. The peak of electrochemical oxidation of hydrogen peroxide, which is formed during the enzymatic reaction of serotonin oxidation under the action of monoamine oxidase was used as an analytical signal of the biosensor. The principle of the biosensor action is based on the inhibitory effect of amitriptyline on the catalytic activity of immobilized monoamine oxidase. The proper choice of a modifier and optimal working conditions provided the range of detectable concentrations of amitriptyline: 1 x 10-4 - 1 x 10-8 M, the lower limit of the determined content at a level of 5 x 10-9 M for monoamine oxidase biosensor. Comparison of the results on the amitriptyline content determination in the pharmaceutical preparation and urine obtained using the monoamine oxidase biosensor and polarization fluorescence immunoassay (dilution of the tracer 1:32, dilution of antibodies 1:128, the range of working concentrations 5 x 10 -8 — 5 x 10-9 M), well-proven in the quantitative determination of medicinal substance, confirmed the correctness of the results obtained.

About the Authors

E. P. Medyantseva
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Elvina P. Medyantseva

18, Kremlevskaya st., Kazan, 420008



D. V. Brusnitsyn
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Daniil V. Brusnitsyn

18, Kremlevskaya st., Kazan, 420008



E. R. Gazizullina
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Elvina R. Gazizullina

18, Kremlevskaya st., Kazan, 420008



R. M. Beylinson
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Regina M. Beylinson

18, Kremlevskaya st., Kazan, 420008



S. A. Eremin
Chemical Department, M. V. Lomonosov Moscow State University
Russian Federation

Sergei A. Eremin

1, Leninskie Gory, Moscow, 119991



M. P. Kutyreva
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Marianna P. Kutyreva

18, Kremlevskaya st., Kazan, 420008



N. A. Ulakhovich
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Nikolay A. Ulakhovich

18, Kremlevskaya st., Kazan, 420008



H. K. Budnikov
A. M. Butlerov Institute of Chemistry, Kazan (Volga region) Federal University
Russian Federation

Herman K. Budnikov

18, Kremlevskaya st., Kazan, 420008



References

1. Medyantseva E. P, Brusnitsyn D. V, Varlamova R. M., et al. Determination of antidepressants using monoamine oxidase amperometric biosensors based on screen-printed graphite electrodes modified with multi-walled carbon nanotubes / Pharm. Chem. J. 2014. Vol. 48. N7.P 478 - 482. DOI: 10.1007/s11094-014-1135-2

2. Medyantseva E. P, Brusnitsyn D. V, Varlamova R. M., et al. Hyperbranched polyesterpolyols as components of amperometric monoamine oxidase biosensors based on electrodes modified with nanomaterials for determination of antidepressants / Russ. J. Appl. Chem. 2017. Vol. 90. N 1. P. 97 - 105. DOI: 10.1134/S1070427217010153

3. Medyantseva E. P, Brusnitsyn D. V, Varlamova R. M., et al. Monoamine oxidase biosensors based on silver nanoparticles and graphene oxide for the antidepressants determination / Butlerov. Soobshch. 2015. Vol. 41. N 3. P 36 - 43 [in Russian].

4. Zumpano R., Polli F., D’Agostino C., et al. Nanostructurebased electrochemical immunosensors as diagnostic tools / Electrochemistry. 2021. Vol. 2. N 1. P 10 - 28. DOI: 10.3390/electrochem2010002

5. Bastos-Soares E. A., Sousa R. M. O., Gomez A. F., et al. Single domain antibodies in the development of immunosensors for diagnostics / Int. J. Biol. Macromol. 2020. Vol. 165. P. 2244-2252. DOI: 10.1016/j.ijbiomac.2020.10.031

6. Chen P., Hua X., Liu J., et al. A dual amplification electrochemical immunosensor based on HRP-Au@AgNPs for carcinoembryonic antigen detection / Anal. Biochem. 2019. Vol. 574. P. 23-30. DOI: 10.1016/j.ab.2019.03.003

7. Zhang Z., Yang M., Wu X., et al. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated singlewalled carbon nanohorns as labels / Chemosphere. 2019. Vol. 225. P 282 - 287. DOI: 10.1016/j.chemosphere.2019.03.033

8. Rafipour R., Kashanian S., Hashemi S., et al. An electrochemical biosensor based on cobalt nanoparticles synthesized in iron storage protein molecules to determine ascorbic acid / Biotechnol. Appl. Biochem. 2016. Vol. 63. N 5. P 740 - 745. DOI: 10.1002/bab.1410

9. Ali A., Qadir M. I., Wazir Z., et al. Cobalt oxide magnetic nanoparticles-chitosan nanocomposite based electrochemical urea biosensor / Indian J. Phys. 2015. Vol. 89. P 331 - 336. DOI: 10.1007/s12648-014-0594-3

10. Srinivasan S. Y., Paknikar K. M., Bodas D., Gajbh V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology / Nanomed. (Lond). 2018. Vol. 13. N 10. P 1221-1238. DOI: 10.2217/nnm-2017-0379

11. Murthy S. K. Nanoparticles in modern medicine: State of the art and future challenges / Int. J. Nanomed. 2007. Vol. 2. N 2. P 129 - 141.

12. Raysyan A., Moerer R., Coesfeld B., et al. Fluorescence polarization immunoassay for the determination of diclofenac in wastewater / Anal. Bioanal. Chem. 2021. Vol. 413. N 4. P. 999 - 1007. DOI: 10.1007/s00216-020-03058-w.

13. Eremin S. A., Khan O. Yu., Pisarev V V, et al. Fluorescence polarization immunoassay, for express control of antibiotic levels: design and characteristics for chloramphenicol, as an example / Antibiot. Khimioter. 2016. Vol. 61. N 9 - 10. P 39 - 43 [in Russian].

14. Li C., Zhang Y., Eremin S. A., et al. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA / Food Chem. 2017. Vol. 227. P 48 - 54. DOI: 10.1016/j.foodchem.2017.01.058

15. Beloglazova N. V., Shmelin P. S., Eremin S. A. Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicinin milk / Talanta. 2016. Vol. 149. P. 217-224. DOI: 10.1016/j.talanta.2015.11.060

16. Zvereva E. A., Zherdev A. V, Formanovsky A. A., et al. Fluorescence polarization immunoassay of colchicine / J. Pharm. Biomed. Anal. 2018. Vol. 159. P. 326 - 330. DOI: 10.1016/j.jpba.2018.07.008

17. Medvedeva O. I., Kambulova S. S., Rossova A. A., et al. Hybrid materials based on magnetic cobalt nanoparticles and hyperbranched polymers / Proc. of Int. Sci. Conference “Functional monomers and polymer materials with special properties: problems, prospects and practical views”. — Sumgait, Azerbajan: SGU, 2017. P 224 [in Russian].

18. Adamczyk M., Fishpaugh J., Harrington C., et al. Immunoassay reagents for psychoactive drugs: 1. The method for the development of antibodies specific to amitriptyline and nortriptyline / J. Immunol. Methods. 1993. Vol. 162. N 1. P 47 - 58. DOI: 10.1016/0022 - 1759(93)90406-W

19. Kutyreva M. P, Gataulina A. R., Kutyrev G. A., et al. Polynuclear copper (II) complexes with polydentate nanoligands on the basis of aminoderivatives of the hyperbranched polyesters / Russ. J. Gen. Chem. 2011. Vol. 81. N 7. P 1535 - 1538. DOI: 10.1134/S1070363211070206

20. Youdim M. B. H., Edmondson D., Tipton K. F. The therapeutic potential of monoamine oxidase inhibitors / Nat. Rev. Neurosci. 2006. Vol. 7. N 4. P 295 - 309. DOI: 10.1038/nrn1883

21. Medyantseva E. P., Brusnitsyn D. V, Varlamova R. M., et al. Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants / J. Anal. Chem. 2017. Vol. 72. N 4. P 362 - 370. DOI: 10.1134/S1061934817040086

22. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al. Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors / Russ. J. Appl. Chem. 2015. Vol. 88. N 1. P 40 - 49. DOI: 10.1134/S1070427215010073

23. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al. Monoamine oxidase amperometric biosensor based on graphite electrodes and graphene oxide as a surface modifier for the determination of some antidepressants / Analit. Kontrol’. 2014. Vol. 18. N 4. P 442 - 450 [in Russian]. DOI: 10.15826/analitika.2014.18.4.011

24. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al.n Nanostructured composites based on graphene and nanoparticles of cobalt in the composition of monoamine oxidase biosensors for determination of antidepressants / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 8. P 5 - 14 [in Russian]. DOI: 10.26896/1028-6861-2018-84-8-5-14

25. Sandulescu R., Tertis M., Cristea C., Bodoki E. New Materials for the Construction of Electrochemical Biosensors / Biosens. Micro Nanoscale Appl. 2015. Ch. 1. P 1 - 36. DOI: 10.5772/60510

26. Berezov T. T., Korovkin B. F. Biological chemistry. — Moscow: Meditsina, 1998. — 704 p. [in Russian].

27. Shaidarova L. G., Chelnokova I. A., Romanova E. I., et al. Joint voltammetric determination of dopamine and uric acid at an electrode modified with self-assembled monolayer of cystamine with gold nanoparticles / Russ. J. Appl. Chem. 2011. Vol. 84. N2.P 218-224. DOI: 10.1134/S1070427211020091

28. Medyantseva E. P., Brusnitsyn D. V., Varlamova R. M., et al. Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants / J. Anal. Chem. 2017. Vol. 70. N 5. P 535 - 539. DOI: 10.1134/S106193481505010X

29. Chen Y., He Q., Shen D., et al. Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the Diisobutyl phthalate in Yoghurt / Food Control. 2019. Vol. 105. P 38 - 44. DOI: 10.1016/j.foodcont.2018.11.052

30. Zhang H., Yang S., Ruyck K. D., et al. Fluorescence polarization assays for chemical contaminants in food and environmental analyses / Trends Anal. Chem. 2019. Vol. 114. P 293-313. DOI: 10.1016/j.trac.2019.03.013

31.


Review

For citations:


Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Beylinson R.M., Eremin S.A., Kutyreva M.P., Ulakhovich N.A., Budnikov H.K. Nanoscale materials in the composition of biosensors for the determination of amitriptyline. Industrial laboratory. Diagnostics of materials. 2021;87(9):20-29. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-9-20-29

Views: 461


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)