Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the low cycle fatigue of 12Cr18Ni10Ti steel based on fractal analysis and artificial intelligence approaches

https://doi.org/10.26896/1028-6861-2021-87-9-59-67

Abstract

The evolution of the structure and assessment of the age limit of steel 12Cr18Ni10Ti upon fatigue loading is considered using neural network modeling and approaches of fractal analysis of the microstructure. An algorithm for processing images of the microstructures has been developed to improve their quality. An indicator of the fractal dimension of the image is used as a quantitative indicator for assessing the evolution of the microstructure of the surface metal layer. A quantitative assessment of the structures at different stress amplitudes is carried out in a wide range of low temperatures using the fractal dimension index. Correlation of the fractal dimension index with the run of the sample material is shown. The appearance of the main crack was observed in the range of 0.7 - 0.8 from the number of cycles to failure, after which the crack growth rate increased. At a lower temperature, the main crack is formed later, but further loading results in a higher crack growth rate. Formation of the secondary phases in austenitic steel at a lower temperature occurred at earlier stages than that at a temperature of t = +20°C, which led to hardening of the material. An artificial neural network (ANN) has been developed and trained for assessing structural changes in metal proceeding from the fractal dimensionality of the microstructure images at different stages of fatigue loading. The developed neural network made it possible to estimate with a sufficiently high accuracy the number of cycles before damage of the sample and the residual life of the material. Thus, the developed ANN can be used to assess the current state of the material in a wide range of low temperatures.

About the Authors

A. A. Khlybov
R. E. Alekseev Nizhny Novgorod State Technical University
Russian Federation

Alexander A. Khlybov

24, Minina ul., Nizhny Novgorod, 603950



Yu. G. Kabaldin
R. E. Alekseev Nizhny Novgorod State Technical University
Russian Federation

Yury G. Kabaldin

24, Minina ul., Nizhny Novgorod, 603950

 



M. S. Anosov
Nizhny Novgorod State Technical University
Russian Federation

Maksim S. Anosov

24, Minina ul., Nizhny Novgorod, 603950

 



D. A. Ryabov
R. E. Alekseev Nizhny Novgorod State Technical University
Russian Federation

Dmitry A. Ryabov

24, Minina ul., Nizhny Novgorod, 603950



D. A. Shatagin
R. E. Alekseev Nizhny Novgorod State Technical University
Russian Federation

Dmitry A. Shatagin

24, Minina ul., Nizhny Novgorod, 603950



References

1. Terent’ev V. F., Korableva S. A. Fatigue of metals. — Moscow: Nauka, 2015. — 484 p. [in Russian].

2. Finkel V. M. Physics of destruction: growth of cracks in solid bodies. — Moscow: Metallurgiya, 1970. — 376 p. [in Russian].

3. Cui W., Huang X., Wang F. Current Understanding of Fatigue Mechanisms of Metals / Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. — Berlin - Heidelberg: Springer, 2014. DOI: 10.1007/978-3-642-41831-0_2

4. Polak J., Petras R., Mazanova V. Basic Mechanisms Leading to Fatigue Failure of Structural Materials / Trans. Indian Inst. Met. 2016. Vol. 69. P 289-294. DOI: 10.1007/s12666-015-0753-z

5. Khlybov A. A., Kabaldin Yu. G., Anosov M. S., et al. The effect of low temperatures on the operability of products 20GL steel / Journal of Physics: Conference Series. VIII International Conference “Deformation and Fracture of Materials and Nanomaterials”. 2020. 012063. DOI: 10.1088/1742-6596/1431/1/012063

6. Koneva N. A., Teplyakova L. A., Sosnin O. V., Tselermaer V. V., Kovalenko V. V. Dislocation substructures and their transformation under fatigue loading / Izv. Vuzov. Fiz. 2002. N 3. P. 87 - 98 [in Russian].

7. Savenkov G. G., Barakhtin B. K. Relationship between the fractal dimension of the fracture surface and the complex of standard characteristics of the material in tension / PMTF. 2011. Vol. 52. N6.P 177 - 184 [in Russian].

8. Carney L. R. and Mecholsky J. J. Relationship between Fracture Toughness and Fracture Surface Fractal Dimension in AISI 4340 Steel / Mater. Sci. Appl. 2013. Vol. 4. N 04. DOI: 10.4236/msa.2013.44032

9. Ivanova V. S., Balankin A. S., Bunin I. Zh., et al. Synergetics and fractals in materials science. — Moscow: Nauka, 1994. — 384 p. [in Russian].

10. Kuznetsov P. V, Petrakova I. V., Shreiber Yu. Fractal dimension as a characteristic of fatigue of metal polycrystals / Fiz. Mezomekh. 2004. Vol. 7. N Special 1. P 389 - 392 [in Russian].

11. Hilders O. A., Zambrano N., Caballero R. Microstructure, Strength, and Fracture Topography Relations in AISI 316L Stainless Steel, as Seen through a Fractal Approach and the Hall-Petch Law / Int. J. Met. 2015. Vol. 2015. P. 10. Article ID 624653. DOI: 10.1155/2015/624653

12. Kim V. A., Mokritskii B. Y., Morozova A. V. Multifractal analysis of microstructures after laser treatment of steels / Solid State Phen. 2020. Vol. 299SSP P 926 - 932.

13. Sagaradze V. V, Uvarov A. I. Hardening and properties of austenitic steels. — Yekaterinburg: RIO UrO RAN, 2013. — 720 p. [in Russian].

14. Kim V. A., Bashkov O. V, Popkova A. A., et al. Fundamentals of quantitative and computer metallography: a tutorial. — Komsomolsk-on-Amur: KnAGTU. 2013. — 133 p. [in Russian].

15. Kesireddy A., McCaslin S. Application of Image Processing Techniques to the Identification of Phases in Steel Metallographic Specimens / Elleithy K., Sobh T. (eds.), New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering. Vol. 312. — Springer, 2015. DOI: 10.1007/978-3-319-06764-3_53

16. Gadalov V. N., Bashkov O. V., Vornacheva I. V., Filonovich A. V. Digital processing of images of metallographic microstructures in MATLAB environment. Methodology / Evraz. Soyuz Uch. (ESU). 2015. N 12(21). P. 43 - 46 [in Russian].Vedom. SPbPU. Estestv. Inzh. Nauki. 2019. Vol. 25. N 4. P. 83 - 93 [in Russian]. DOI: 10.18721/JEST.25407

17. Kabaldin Yu. G., Anosov M. S., Shatagin D. A., et al. Mechanisms of fatigue destruction of materials at low temperatures / Vestn. Mashinostr. 2017. N 7. P 51 - 58 [in Russian].

18. Vologzhanina S. A., Igolkin A. F., Petkova A. P. Investigation of the effect of low temperatures and deformations on the properties of austenitic steel 12Cr18Ni10Ti / Nauch.-Tekhn.

19. Snezhnoy G. V, Olshanetsky V. E. On the peculiarities of the formation and transformation of e-martensite during plastic deformation of austenitic chromium-nickel steels / Nov. Mater. Tekhnol. Metallurg. Mashinostr. 2016. N 2. P 43 - 49 [in Russian].

20. Solntsev Yu. P., Vologzhanina S. A., Igolkin A. F. Materials science: textbook. — Moscow: Akademiya, 2016. — 288 p. [in Russian]

21. Kotrechko S. A. Local approach to the analysis of brittle fracture and its physical interpretation / Probl. Prochn. 2003. N 4. P. 14 - 31 [in Russian]


Review

For citations:


Khlybov A.A., Kabaldin Yu.G., Anosov M.S., Ryabov D.A., Shatagin D.A. Study of the low cycle fatigue of 12Cr18Ni10Ti steel based on fractal analysis and artificial intelligence approaches. Industrial laboratory. Diagnostics of materials. 2021;87(9):59-67. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-9-59-67

Views: 527


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)