

Determination of the mineral composition of copper ores by X-Ray methods
https://doi.org/10.26896/1028-6861-2021-87-10-5-11
Abstract
One of the most difficult tasks of the analytical control of copper ores is the determination of the mineral forms of copper. Currently, for this purpose, iodometric and atomic absorption methods are used with preliminary leaching of various mineral forms. The disadvantage of those methods is a rather complicated sample preparation procedure and significant time of analysis. The most universal method for determining the mineral composition of solid samples is the X-ray diffraction method. However, significant variations in the phase composition of copper ores, overlapping reflections of different phases, the presence of an amorphous phase and structural defects necessitate the development of special approaches. In this work, the presence of an amorphous phase is taken into account by direct calculation of the mass fractions of crystalline phases by the G-factor method. The total copper content is determined by the X-ray fluorescence method. Methodological approaches based on using only X-ray methods are proposed, which exclude the procedures of leaching and dissolution of samples and provide determination of primary and secondary copper sulfides using calibration characteristics (3 min), and gaining data on the complete phase composition at the stage of routine analysis (10 – 15 min) and for research purposes (15 – 20 min).
About the Authors
A. S. KozlovRussian Federation
Alexander S. Kozlov
4, Leninskii prosp., Moscow, 119049
22 – 1, Tsvetnoy bul., Moscow, 127051
P. S. Chizhov
Russian Federation
Pavel S. Chizhov
1-3, Leninskiye Gory, Moscow, 119991
22 – 1, Tsvetnoy bul., Moscow, 127051
V. A. Filichkina
Russian Federation
Vera A. Filichkina
4, Leninskii prosp., Moscow, 119049
M. N. Filippov
Russian Federation
Mikhail N. Filippov
4, Leninskii prosp., Moscow, 119049
31, Leninskii prosp., Moscow, 119071
References
1. Avdonin V. V., Boytsov V. E., Grigoriev V. M., et al. Deposits of metallic minerals. — Moscow: Academic project. Triksta, 2005. — 720 p. [in Russian].
2. Bogdanov O. S., Maksimov I. I., Podnek A. K., Yanis N. A. Theory and technology of ore flotation. — Moscow: Nedra, 1990. — 363 p. [in Russian].
3. Revenko A. G. X-ray spectral fluorescence analysis of natural materials. — Novosibirsk: Nauka, 1994. — 264 p. [in Russian].
4. Bakhtiarov A. V., Saveliev S. K. X-Ray fluorescence analysis of mineral raw materials. — St. Petersburg: Izd. Peterburg. Univ., 2014. — 148 p. [in Russian].
5. Rammlmair D., Wilke M., Rickers K., et al. Geology, Mining, Metallurgy / Handbook of Practical X-Ray Fluorescence Analysis // Ed. by B. Beckhoff, B. Kanngießer, N. Langhoff, et al. — Berlin – Heidelberg: Springer-Verlag, 2006. P. 640 – 686.
6. Baum W. Ore characterization, process mineralogy and lab automation a roadmap for future mining / Miner. Eng. 2014. Vol. 60. P. 69 – 73. DOI: 10.1016/j.mineng.2013.11.008
7. Selivanov E. N., Gulyaeva R. I., Klyushnikov A. M. Study of the structure and phase composition of copper-cobalt sulfide ores of the Dergamysh deposit / Tsvet. Met. 2016. N 3. P. 13 – 17 [in Russian]. DOI: 10.17580/tsm.2016.03.02
8. Kozlov A. S., Chizhov P. S., Filichkina V. A. Combined X-Ray Spectroscopic and X-Ray diffraction Methods for Determination of Iron (II) in Terms of Oxide of Iron and Magnetite Iron Ore / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 3. P. 19 – 27 [in Russian].
9. Kozlov A. S., Chizhov P. S., Filichkina V. A. Combined XRD-XRF Method of Fe2+ Determination in sinters / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 12. P. 5 – 11 [in Russian]. DOI: 10.26896/1028-6861-2017-83-12-05-11
10. Rietveld H. M. The Rietveld Method: A Retrospection / Zeitschrift Für Kristallographie. 2010. Vol. 225. P. 545 – 547. DOI: 10.1524/zkri.2010.1356
11. The Rietveld Method / Ed. by A. Young, IUCr Monographs in Crystallography. Vol. 5. International Union of Crystallography. — New York: Oxford University Press, 1993. — 298 p.
12. O’Connor B. H., Raven M. D. Applying Rietveld refinement procedure in assaying powder mixtures / Powder Diffr. 1988. Vol. 3. N 1. P. 2 – 6. DOI: 10.1017/S0885715600013026
13. Madsen I. C., Scarlett N. V. Y., Kern A. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction / Z. Kristallogr. 2011. Vol. 226. P. 944 – 955. DOI: 10.1524/zkri.2011.1437
14. Aranda M. A. G., De la Torre A. G. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products / Rev. Mineral. Geochem. 2012. Vol. 74. P. 169 – 209. DOI: 10.2138/rmg.2012.74.5
15. Nguyen D. D., Devlin L., Koshy P., Sorrell C. C. Quantitative X-Ray Diffraction Analysis of Anhydrous and Hydrated Portland Cement. Part 2: Computer-Based Methods / Adv. Mater. Res. 2015. Vol. 1087. P. 498 – 503. DOI: 10.4028/www.scientific.net/AMR_1087.498
Review
For citations:
Kozlov A.S., Chizhov P.S., Filichkina V.A., Filippov M.N. Determination of the mineral composition of copper ores by X-Ray methods. Industrial laboratory. Diagnostics of materials. 2021;87(10):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-10-5-11