

Determination of the pressure inside pores
https://doi.org/10.26896/1028-6861-2021-87-10-40-43
Abstract
Determination of the porosity, structural characteristics of pores, and gas pressure in closed pores is the most important part of assessing physical and mechanical properties of materials. The internal pressure inside the pore can be used in estimating the level of strength reliability of the porous volume of the product to optimize the technological processes of product manufacturing, control their structure and properties, and avoid the formation of cracks at the boundaries of the particles consisting the material. We present a method for calculating the internal pressure in a spherical pore that has arisen in the material of a product obtained using powder metallurgy or additive technologies. The proposed procedure for measuring internal pressure in a pore consists in application of an external pressure to the product, measurements of the displacements of the points on the pore surface, and calculation of the internal pressure from the difference between the displacements. In this case, the known solutions of the problem of the theory of elasticity regarding the deformation of a spherical cavity located in the center of a spherical hollow ball are used. The results obtained can be used to assess the properties and structure of the products obtained by additive technology and methods of powder metallurgy, as well as to improve the technology of their manufacture.
About the Authors
М. I. AlymovRussian Federation
Mikhail I. Alymov
8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432
S. I. Averin
Russian Federation
Sergey I. Averin
49, Leninsky prosp., Moscow, 119334
E. M. Morozov
Russian Federation
Evgeny M. Morozov
31, Kashirskoe sh., Moscow, 115409
I. V. Saikov
Russian Federation
Ivan V. Saikov
8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432
F. F. Galiev
Russian Federation
Fanis F. Galiev
8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432
References
1. Jibowu T. A Review on Nanoporous Metals / Frontiers in Nanoscience and Nanotechnology. 2016. Vol. 2(4). P. 165 – 168. DOI: 10.15761/FNN.1000129
2. Basgul C., Yu T., MacDonald D., Siskey R., Marcolongo M., Kurtz S. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? / J. Mech. Behav. Biomed. Mater. 2020. Vol. 102. 103455. DOI: 10.1016/j.jmbbm.2019.103455
3. Jun L., Xiaolin C., Hooper G., Lim K., Woodfield T. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: а review / J. Mech. Behav. Biomed. Mater. 2020. Vol. 105. 103671. DOI: 10.1016/j.jmbbm.2020.103671
4. Luo S., Liu B., Tian J., Qian M. Sintering of titanium in argon and vacuum: Pore evolution and mechanical properties / Int. J. Refract. Met. Hard Mater. 2020. Vol. 90. 105226. DOI: 10.1016/j.ijrmhm.2020.105226
5. Kale A., Kim B.-K., Kim D.-I., Castle E., Reece M., Choi Sh.-H. An investigation of the corrosion behavior of 316L stainless steel fabricated by SLM and SPS techniques / Mater. Charact. 2020. Vol. 163. 110204. DOI: 10.1016/j.matchar.2020. 110204
6. Bandyopadhyay A., Espana F., Balla V., Bose S., Ohgami Y., Davies N. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants / Acta Biomater. 2010. Vol. 6. N 4. P. 1640 – 1648. DOI: 10.1016/j.actbio.2009.11.011
7. Egorov M. S., Krasilo M. S., Dedov M. Yu. Mechanical properties of sintered materials. Effect of porosity on the powder alloys ductility / Fundam. Osn. Mekh. 2018. N 3. P. 143 – 149 [in Russian].
8. Puchka O. V., Vaisera S. S. On the issue of porous materials strength increasing / Int. Sci. and Pract. Conf. «Science-based technologies and innovations»: Coll. of reports. — Belgorod, 2016. P. 332 – 337 [in Russian].
9. Bajare D., Kazjonovs J., Korjakins A. Lightweight Concrete with Aggregates Made by Using Industrial Waste / J. Sustain. Architect. Civil Eng. 2013. Vol. 4. N 5. P. 67 – 73. DOI: 10.5755/j01.sace.4.5.4188
10. Pavlenko A., Koshlak H., Cheilytko A., Nosov M. Study of the formation of gas-vapor in the liquid mixture / East.-Eur. J. Enterp. Technol. 2016. Vol. 4. N 5(82). P. 58 – 65. DOI: 10.15587/1729-4061.2016.75428
11. Ronneberg T., Davies C., Hooper P. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment / Mater. Des. 2020. Vol. 189. 108481. DOI: 10.1016/j.matdes.2020.108481
12. Lopez-Pamies O. Castańeda P., Idiart M. Effects of internal pore pressure on closed-cell elastomeric foams / Int. J. Solids Struct. 2012. Vol. 49. N 19 – 20. P. 2793 – 2798. DOI: 10.1016/j.ijsolstr.2012.02.024
13. Aboudi J., Arnold S., Bednarcyk B. Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach. — Elsevier, 2013. — 973 p.
14. Landau L. D., Lifshits E. M. Theory of elasticity. — Moscow: Nauka, 1987. — 246 p. [in Russian].
Review
For citations:
Alymov М.I., Averin S.I., Morozov E.M., Saikov I.V., Galiev F.F. Determination of the pressure inside pores. Industrial laboratory. Diagnostics of materials. 2021;87(10):40-43. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-10-40-43