

The use of carbon nanotubes to increase the sensitivity of the antibiotic determination with a piezoelectric immunosensor
https://doi.org/10.26896/1028-6861-2021-87-12-12-17
Abstract
Conditions for the preparation of carbon nanomaterials for embedding into the discerning layer of a piezoelectric immunosensor are described. The effect of the oxidation method, temperature, and the duration of treatment of nanomaterials with an oxidizing agent on the surface concentration of active functional groups is demonstrated. It is shown that the use of carboxylated carbon nanotubes (CNT) increases the efficiency of their binding to biomolecules and increases the stability of the discerning layer of a piezoelectric sensor when measurements are carried out in liquid media. Conditions for the determination of antibiotics using piezoelectric immunosensors modified with carbon nanomaterial were studied including the choice of immunoreagent concentrations and assessment of the selectivity of antibiotic determination. The CNT-based piezoelectric immunosensors providing rapid, highly sensitive, and selective determination of the analyte at the MRL level and below it in food products and biological fluids are proposed.
About the Authors
E. I. ShinkoRussian Federation
Evgenia I. Shinko
30, Moskovskaya ul., Lipetsk, 398055
O. V. Farafonova
Russian Federation
Olga V. Farafonova
30, Moskovskaya ul., Lipetsk, 398055
T. N. Ermolaeva
Russian Federation
Tatyana N. Ermolaeva
30, Moskovskaya ul., Lipetsk, 398055
References
1. Porto L. S., Silva D. N., de Oliveira A. E. F., et al. Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest / Rev. Anal. Chem. 2019. Vol. 38. N 3. P. 1 – 16. DOI: 10.1515/revac-2019-0017
2. Piloto C., Mirri F., Bengio E. A., et al. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant-free dip coating / Sens. Actuators. B. 2016. N 227. P. 128 – 134. DOI: 10.1016/j.snb.2015.12.051
3. Yanga N., Chen X., Ren. T., et al. Carbon nanotube based biosensors / Sens. Actuators. B. 2015. N 207. P. 690 – 715. DOI: 10.1016/j.snb.2014.10.040
4. Medyantseva E., Brusnitsyn D., Varlamova R., et al. Surface Modification of Electrodes by Carbon Nanotubes and Gold and Silver Nanoparticles in Monoaminoxidase Biosensors for the Determination of Some Antidepressants / J. Anal. Chem. 2017. Vol. 72. N 4. P. 362 – 370. DOI: 10.1134/S1061934817040086
5. Benjamin S. R., Vilela R. S., Camargo H. S. Enzymatic Electrochemical Biosensor Based on Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles for Rutin Detection / Int. J. Electrochem. Sci. 2018. Vol. 13. P. 563 – 586. DOI: 10.20964/2018.01.51
6. Qian Q., Hu Q., Li L., et al. Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination / Sens. Actuators. B. 2018. N 257. P. 23 – 28. DOI: 10.1016/j.snb.2017.10.110
7. Huang Q., Lin X., Tong L., et al. Graphene Quantum Dots / Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells / ACS Sustainable Chem. & Eng. 2020. Vol. 8. N 3. P. 1644 – 1650. DOI: 10.1021/acssuschemeng.9b06623
8. Arumugasamy S. K., Govindaraju S., Yun K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes / Appl. Surf. Sci. 2020. Vol. 508. 145294. DOI: 10.1016/j.apsusc.2020.145294
9. Misbakhov R. S., Vasev A. N., Sakhabutdinov A. Z., et al. Address Fiber Optical Sensor for Relative Humidity Measuring in a Switchgear / Radiostroenie. 2020. N 1. P. 1 – 16 [in Russian]. DOI: 10.36027/rdeng.0120.0000157
10. Taghdisi S. M., Danesh N. M., Ramezani M., et al. A novel fluorescent aptasensor for ultrasensitive detection of microcystinLR based on single-walled carbon nanotubes and dapoxyl / Talanta. 2017. N 166. P. 187 – 192. DOI: 10.1016/j.talanta.2017.01.053
11. Pathak A., Gupta B. D. Fiber-Optic Plasmonic Sensor Utilizing CTAB-Functionalized ZnO Nanoparticle-Decorated Carbon Nanotubes on Silver Films for the Detection of Catechol in Wastewater / ACS Appl. Nano Mater. 2020. Vol. 3. N 3. P. 2582 – 2593. DOI: 10.1021/acsanm.0c00001
12. Guliy O. I., Zaitsev B. D., Alsowaidi A. K. M., et al. Biosensor systems for antibiotics detection / Biofizika. 2021. Vol. 66. N 4. P. 657 – 667 [in Russian]. DOI: 10.31857/S0006302921040050
13. Karaseva N. A., Belyaeva E. A., Levkina V. V., et al. Development of Piezoelectric Sensors on the Basis of Electrosynthesized Molecularly Imprinted Polymers for β-lactam Antibiotics’ Detection / Procedia Technol. 2017. Vol. 27. P. 185 – 186. DOI: 10.1016/j.protcy.2017.04.079
14. Karaseva N., Ermolaeva T., Mizaikoff B. Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics / Sens. Actuators. B. 2016. Vol. 225. P. 199 – 208. DOI: 10.1016/j.snb.2015.11.045
15. Voronezhtseva O. V., Ermolaeva T. N. The determination of aminoglycoside antibiotics in food by piezoquartz immunosensor / Sorbts. Khromatogr. Prots. 2011. Vol. 11. N 1. P. 68 – 76 [in Russian].
16. Voronezhtseva O. V., Vasiliev S. V., Parshin Yu. V., Ermolaeva T. N. Piezoquartz immunosensor for the determination of tetracyclines in food / Biological monitoring of natural and technogenic systems: Proc. of the All-Russian scientific-practical conference with international participation. Part 2. — Kirov, 2011. P. 43 – 45 [in Russian].
Review
For citations:
Shinko E.I., Farafonova O.V., Ermolaeva T.N. The use of carbon nanotubes to increase the sensitivity of the antibiotic determination with a piezoelectric immunosensor. Industrial laboratory. Diagnostics of materials. 2021;87(12):11-16. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-12-12-17