

Study of Ti – Al based high-temperature cermet filters
https://doi.org/10.26896/1028-6861-2021-87-12-26-32
Abstract
Operation in corrosive media and/or at high temperatures requires improved characteristics of the performance and durability of filtering equipment. The Ti – Al intermetallic system combines low density with high strength and exhibits high resistance to oxidation and corrosion at elevated temperatures. We present the results of studying high-temperature Ti – Al cermet products (filters) with nanoscale pores. Filters were obtained from a mixture of Ti and Al powders (mass ratio 40:60) by thermal explosion. XRD methods showed that the synthesized material consists of two main phases: TiAl3 and Al2O3. The microstructure analysis revealed the presence of large-sized TiAl3 structures and spherical Al2O3 aggregates enveloped by nanostructured TiAl3. Moreover, nanoscale fibrous TiAl3 compounds forming a multilevel developed cobweb-like structure are observed in the entire volume of the pore space of the material. The open porosity of the material was 48%, the pore size was 0.1 – 0.2 μm, the efficiency of the porous material was 99.999%, the resistance to gas flow was 100 mm of water column, and the filtration index was 0.062. Thermal tests revealed the possibility of effective use of filters under conditions of elevated (up to 800°C) temperatures and corrosive media due to the chemically stable and heat-resistant binary structure of the material. The results obtained can be used to improve the methodology of the development and operation of high-temperature cermet filters based on Ti – Al.
About the Authors
A. O. KirillovRussian Federation
Andrey O. Kirillov
8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432
V. I. Uvarov
Russian Federation
Valeriy I. Uvarov
8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432
R. D. Kapustin
Russian Federation
Roman D. Kapustin
8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432
References
1. Ali A., Tufa R., Macedonio F., et al. Membrane technology in renewable-energy-driven desalination / Renew. Sustainable Energy Rev. 2018. Vol. 81. N 1. P. 1 – 21. DOI: 10.1016/j.rser.2017.07.047
2. Tang C., Yang Z., Guo H., el al. Potable Water Reuse through Advanced Membrane Technology / Environ. Sci. Technol. 2018. Vol. 52. N 18. P. 10215 – 10223. DOI: 10.1021/acs.est.8b00562
3. Nunes S. P., Peinemann K.-V. Membrane Technology: in the Chemical Industry. 2nd edition. — Weinheim: Wiley-VCH, 2006. — 358 р.
4. Li C., Sun W., Lu Z., el al. Ceramic nanocomposite membranes and membrane fouling: а review / Water Res. 2020. Vol. 175. P. 115674. DOI: 10.1016/j.watres.2020.115674
5. Munirasu S., Haija M., Banat F. Use of membrane technology for oil field and refinery produced water treatment (а review) / Process Saf. Environ. Prot. 2016. Vol. 100. P. 183 – 202. DOI: 10.1016/j.psep.2016.01.010
6. Shi X., Tal G., Hankins N., et al. Fouling and cleaning of ultrafiltration membranes: a review / J. Water Proc. Engi. 2014. Vol. 1. P. 121 – 138. DOI: 10.1016/j.jwpe.2014.04.003
7. Andrianov A. The study and optimization of the installations water purification by ultrafiltration: autoref. dis. — Moscow: MGSU, 2003. — 24 p. [in Russian].
8. Kamato Y., Suzuki Y. Reactive synthesis of porous MgAl2O4 membranes on a macroporous Al2O3-based ceramic tube toward cross-flow ultrafiltration / J. Ceram. Soc. 2019. Vol. 127. P. 267 – 271. DOI: 10.2109/jcersj2.18202
9. Ulbricht M. Advanced functional polymer membranes / Pol. 2006. Vol. 47. N 7. P. 2217 – 2262. DOI: 10.1016/j.polymer.2006.01.084
10. Zearley T., Summers S. Removal of trace organic micropollutants by drinking water biological filters / Environ. Sci. Technol. 2012. Vol. 46. N 17. P. 9412 – 9419. DOI: 10.1021/es301428e
11. Muhammad N., Sinha R., Krishnan E., et al. Ceramic filter for small system drinking water treatment: evaluation of membrane pore size and importance of integrity monitoring / J. Environ. Eng. 2009. Vol. 135. N 11. P. 1181 – 1191. DOI: 10.1061/(ASCE)EE.1943-7870.0000084
12. Zhu B., Duke M., Dumée L., et al. Short Review on Porous Metal Membranes — Fabrication, Commercial Products and Applications / Membranes. 2018. Vol. 8. N 3. P. 83. DOI: 10.3390/membranes8030083
13. Zang C., Tang H., Wang J. Research progress on mechanical properties of sintered metallic porous materials / Rare Met. Mater. Eng. 2009. Vol. 38. P. 437 – 442.
14. Yao J., Yang G., Li C. Fabrication of Porous Stainless Steel by Flame Spraying of Semimolten Particles / Mater. Manuf. Process. 2014. Vol. 29. N 10. P. 1253 – 1259. DOI: 10.1080/10426914.2014.9414792014
15. Kim Y. M., Kim S. J., Kim Y. S. Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network / Desalination. 2009. Vol. 238. N 1 – 3. P. 312 – 332. DOI: 10.1016/j.desal.2008.10.004
16. Shen P., Gao H., Song M. Preparation and Pore Structure Stability at High Temperature of Porous Fe – Al Intermetallics / J. Mater. Eng. Perf. 2013. Vol. 22. P. 3959 – 3966. DOI: 10.1007/s11665-013-0703-z
17. Hammel E., Ighodaro O., Okoli O. Processing and properties of advanced porous ceramics: An application based review / Ceram. Int. 2014. Vol. 40. N 10A. P. 15351 – 15370. DOI: 10.1016/j.ceramint.2014.06.095
18. Deng X., Wang J., Liu J., et al. Preparation and characterization of porous mullite ceramics via foam-gelcasting / Ceram. Int. 2015. Vol. 41. P. 9009 – 9017. DOI: 10.1016/j.ceramint.2015.03.237.
19. Nguyen-Manh D., Cawkwell M., Gröger R., et al. Dislocations in materials with mixed covalent and metallic bonding / Mater. Sci. Eng. A. 2005. Vol. 400 – 401. P. 68 – 71. DOI: 10.1016/j.msea.2005.03.081
20. Wang Z., Jiao X., Feng P., et al. Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process / Intermetallics. 2016. Vol. 68. P. 95 – 100. DOI: 10.1016/j.intermet.2015.09.010
21. Dong H., Jiang Y., He Y., Song M. Formation of porous Ni – Al intermetallics through pressureless reaction synthesis / J. Alloy Compd. 2009. Vol. 484. P. 907 – 913. DOI: 10.1016/j.jallcom.2009.05.079
22. Ran H., Niu J., Song B., et al. Microstructure and properties of Ti5Si3-based porous intermetallic compounds fabricated via combustion synthesis / J. Alloy Compd. 2014. Vol. 612. P. 337 – 342. DOI: 10.1016/j.jallcom.2014.05.216
23. Boyarchenko O., Kamynina O., Sytschev A., et al. Synthesis of Ti – Al-based materials by thermal explosion / Int. J. Self-Propag. High-Temp. Synth. 2010. Vol. 19. P. 285 – 291. DOI: 10.3103/S1061386210040084
24. Kamynina O., Bozhko S., Boyarchenko O., et al. Formation of the Structure and Phase Composition of Ti – Al – Ta-Based Materials / Russ. J. Non-ferrous Metals. 2016. Vol. 57. N 5. P. 489 – 496. DOI: 10.3103/S1067821216050072
25. Li X., Cheng G., Xue W., et al. Wear and corrosion resistant coatings formed by microarc oxidation on TiAl alloy / Mater. Chem. Phys. 2008. Vol. 107. P. 148 – 152. DOI: 10.1016/j.matchemphys.2007.06.067
26. Zollinger J., Lapin J., Daloz D., Combeau H. Influence of oxygen on solidification behaviour of cast TiAl-based alloys / Intermetallics. 2007. Vol. 15. P. 1343 – 1350. DOI: 10.1016/j.intermet.2007.04.002
27. Lapin J. Creep behaviour of a cast TiAl-based alloy for industrial applications / Intermetallics. 2016. Vol. 14. N 2. P. 115 – 122. DOI: 10.1016/j.intermet.2005.03.008.
28. Kiparisov S. S., Libenson G. A. Powder metallurgy. — Moscow: Metallurgiya, 1980. — 496 p. [in Russian].
29. Alymov M., Shustov V., Uvarov V. Gradient-structure titanium carbide filter for liquid and gas filtration / Inorg Mater. 2015. Vol. 51. P. 984 – 990. DOI: 10.1134/S0020168515090010
30. Aani S., Mustafa T., Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade / J. Water Proc. Eng. 2020. Vol. 35. P. 101241. DOI: 10.1016/j.jwpe.2020.101241
31. Borovinskaya I., Merzhanov A., Uvarov V. Capillary-porous SHS materials for filtration of liquids and gases / Science-production. 2001. N 10. P. 28 – 32.
32. Shiryaev A. Thermodynamics of SHS: Modern approach / Int. J. Self-Propag. High-Temp Synth. 1995. N 4. P. 351 – 362.
33. Moore J., Feng H. Combustion synthesis of advanced materials. Part I. Reaction parameters / Progress Mater. Sci. 1995. Vol. 39. P. 243 – 273.
34. Shen P., He Y., Gao H. Development of a new graded-porosity FeAl alloy by elemental reactive synthesis / Desalination. 2009. Vol. 249. P. 29 – 33. DOI: 10.1016/j.desal.2009.06.012
35. Arakawa Y., Kobashi M., Kanetake N. Foaming behavior of long-scale Al – Ti intermetallic foam by SHS mode combustion reaction / Intermetallics. 2013. Vol. 41. P. 22 – 27. DOI: 10.1016/j.intermet.2013.04.004
36. Sohn H., Wang X. Self-Propagating High Temperature Synthesis (SHS) of Intermetallic Compounds Titanium and Nickel Aluminides / Mater Manuf. Processes. 1994. Vol. 9. N 1. P. 75 – 87. DOI: 10.1080/10426919408934886
37. Shi Q., Qin B., Feng P., Ran H. Synthesis, microstructure and properties of Ti – Al porous intermetallic compounds prepared by a thermal explosion reaction / RSC Advances. 2015. Vol. 5. P. 46339 – 46347. DOI: 10.1039/C5RA04047G
38. Bakunov V. S., Balkevich V. L., Guzman I. Ya., Lukin E. S. Workshop on the technology of ceramics and refractories. — Moscow: Stroyizdat, 1972. — 352 p. [in Russian].
39. Wang J., Kong L., Li T., et al. A novel TiAl3/Al2O3 composite coating on γ-TiAl alloy and evaluating the oxidation performance / J. Appl. Surf. Sci. 2016. Vol. 361. P. 90 – 94. DOI: 10.1016/j.apsusc.2015.11.155
40. Bester G., Fähnle M. Interpretation of ab initio total energy results in a chemical language: II. Stability of TiAl3 and ScAl3 / J. Phys. Condens. Matter. 2001. Vol. 13. P. 11551. DOI: 10.1088/0953 – 8984/13/50/314
Review
For citations:
Kirillov A.O., Uvarov V.I., Kapustin R.D. Study of Ti – Al based high-temperature cermet filters. Industrial laboratory. Diagnostics of materials. 2021;87(12):23-29. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-12-26-32