

Study of the effect of test parameters on the assessment of steel resistance to carbon dioxide corrosion
https://doi.org/10.26896/1028-6861-2021-87-12-42-47
Abstract
Carbon dioxide (CO2) corrosion is one of the most dangerous types of destruction of metal products in the oil and gas industry. The field steel pipelines and tubing run the highest risk. Laboratory tests are carried out to assess the resistance of steels to carbon dioxide corrosion. However, unified requirements for certain test parameters are currently absent in the regulatory documentation. We present the results of studying the effect of the parameters of laboratory tests on the assessment of the resistance of steels to CO2 corrosion. It is shown that change in the parameters of CO2 concentration, chemical composition of the water/brine system, the buffer properties and pH, the roughness of the sample surface, etc., even in the framework of the same laboratory technique, can lead in different test results. The main contribution to the repeatability and reproducibility of test results is made by the concentration of CO2, pH of the water/brine system, and surface roughness of the samples. The results obtained can be used in developing recommendations for the choice of test parameters to ensure a satisfactory convergence of the results gained in different laboratories, as well as in elaborating of a unified method for assessing the resistance of steels to carbon dioxide corrosion.
About the Authors
A. S. FedorovRussian Federation
Aleksandr S. Fedorov
29, ul. Politekhnicheskaya, St. Petersburg, 195251
E. L. Alekseeva
Russian Federation
Ekaterina L. Alekseeva
29, ul. Politekhnicheskaya, St. Petersburg, 195251
A. A. Alkhimenko
Russian Federation
Aleksey A. Alkhimenko
29, ul. Politekhnicheskaya, St. Petersburg, 195251
N. O. Shaposhnikov
Russian Federation
Nikita O. Shaposhnikov
29, ul. Politekhnicheskaya, St. Petersburg, 195251
M. A. Kovalev
Russian Federation
Mark A. Kovalev
29, ul. Politekhnicheskaya, St. Petersburg, 195251
References
1. Kashkovskii R. V., Ibatullin K. A. Some aspects of carbon dioxide corrosion of steel equipment and pipelines in oil and gas fields / Nauka Tekhn. Gaz. Promyshl. 2016. N 3. P. 71 – 91 [in Russian].
2. Ioffe A. V., Revyakin V. A., Borisenkova E. A., Knyazkin S. A. Features of corrosion destruction of oil and gas pipelines in the operating conditions of Komi and Western Siberia / Vekt. Nauki Tolyatti. Gos. Univ. 2010. N 4. P. 50 – 54 [in Russian].
3. Alkhimenko A. Corrosion testing of experimental steels for oilfield pipelines / Corrosion in the Oil & Gas Industry. 2019. Vol. 121. DOI: 10.1051/e3sconf/201912101001
4. Markin A. N., Nizamov R. E. CO2 corrosion of oilfield equipment. — Moscow: VNIIOENG, 2003. — 188 p. [in Russian].
5. Li W., Zhou Y., Xue Y. Corrosion behavior about tubing steel in environment with high H2S and CO2 content / Journal of Wuhan University of Technology-Mater. Sci. Ed. 2013. Vol. 28. N 5. P. 1038 – 1043. DOI: 10.1007/s11595-013-0815-1
6. Kostitsyna I., Shakhmatov A., Davydov A. Study of corrosion behavior of carbon and low-alloy steels in CO2-containing environments / Corrosion in the Oil & Gas Industry. 2019. Vol. 121. DOI: 10.1051/e3sconf/201912104006
7. Devyaterikova N., Nurmukhametova M., Kharlashin A., Popov Y. Types of corrosion damage of tubing in the oilfield / Corrosion in the Oil & Gas Industry. 2019. Vol. 121. DOI: 10.1051/e3sconf/201912103001
8. Zapevalov D., Vagapov R. Aspects of protection against carbon dioxide corrosion of gas production facilities / Corrosion in the Oil & Gas Industry. 2019. Vol. 121. DOI: 10.1051/e3sconf/201912102013
9. Ermakov B. S., Shaposhnikov N. O. Effect of Production Factors on Main Oil Pipeline Pipe Metal Property Formation / Metallurgist. 2018. Vol. 62. N 7. P. 766 – 771. DOI: 10.1007/s11015-018-0718-7
10. Zhou E., Yu Z., Qu J., Qi T., Han X., Zhang G. Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions / Acta Physico-Chimica Sinica. 2012. Vol. 28. N 11. P. 2567 – 2573. DOI: 10.3866/PKU.WHXB201208211
11. Tan Z., Gao G., Yu Y., Gu C. Solubility of oxygen in aqueous sodium carbonate solution at pressures up to 10 MPa / Fluid phase equilibria. 2001. Vol. 180. N 1 – 2. P. 375 – 382. DOI: 10.1016/S0378-3812(01)00371-5
12. Lange R., Staaland H., Mostad A. The effect of salinity and temperature on solubility of oxygen and respiratory rate in oxygen-dependent marine invertebrates / Journal of Experimental Marine Biology and Ecology. 1972. Vol. 9. N 3. P. 217 – 229. DOI: 10.1016/0022-0981(72)90034-2
13. Hoar T. P., Mears D. C., Rothwell G. P. The relationships between anodic passivity, brightening and pitting / Corrosion Science. 1965. Vol. 5. N 4. P. 279 – 289. DOI: 10.1016/S0010-938X(65)90614-1
14. Liu Q. Y., Mao L. J., Zhou S. W. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments / Corrosion science. 2014. Vol. 84. P. 165 – 171. DOI: 10.1016/j.corsci.2014.03.025
15. Zeng Z., Lillard R., Cong H. Effect of salt concentration on the corrosion behavior of carbon steel in CO2 environment / Corrosion. 2016. Vol. 72. N 6. P. 805 – 823. DOI: 10.5006/1910
16. Kauffman G. B. The Bronsted-Lowry acid base concept / Journal of Chemical Education. 1988. Vol. 65. N 1. P. 28 – 31. DOI: 10.1021/ed065p28
17. Intaeva K. V., Borisenkova E. A. Classification of mechanisms of corrosion destruction / Innov. Kach. Servis Tekhn. Tekhnol. 2018. P. 184 – 188 [in Russian].
18. Toloei A., Stoilov V., Northwood D. The relationship between surface roughness and corrosion / ASME International Mechanical Engineering Congress and Exposition. 2013. DOI: 10.1115/IMECE2013-65498
Review
For citations:
Fedorov A.S., Alekseeva E.L., Alkhimenko A.A., Shaposhnikov N.O., Kovalev M.A. Study of the effect of test parameters on the assessment of steel resistance to carbon dioxide corrosion. Industrial laboratory. Diagnostics of materials. 2021;87(12):36-41. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-12-42-47