Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Procedure for determining the constants of JH-2 (Johnson – Holmquist) dynamic fracture model for brittle materials

https://doi.org/10.26896/1028-6861-2021-87-12-56-62

Abstract

A simplified method for evaluating the constants in the JH-2 (Johnson – Holmqvist) model of the dynamic fracture for brittle materials is presented. The classical procedure suggests the use of 21 independent parameters describe the material, and the problem of their determination entails a large number of calculations experiments which hamper the use of the JH-2 model. The proposed technique requires fewer complex calculations and experimental data to determine the parameters of the material thus making it more feasible in use. In this work, the technique is used to search for the parameters of aluminum oxide (Al2O3) with a density of 99.5%, which is the material of a ceramic barrier subjected to high-speed interaction with the impactor. We present the results of three tests for penetration of a corundum plate: two of them are used to determine the constants of the model, and the third is used to verify the obtained values. Note that, the results obtained using the presented approach match quite accurately the experimental data, which is demonstrated in the course verification of the procedure.

About the Authors

O. G. Krutova
N. I. Lobachevsky Nizhniy Novgorod State University
Russian Federation

Olesya G. Krutova

23, prosp. Gagarina, Nizhny Novgorod, 603022



N. N. Berendeev
N. I. Lobachevsky Nizhniy Novgorod State University
Russian Federation

Nikolai N. Berendeev

23, prosp. Gagarina, Nizhny Novgorod, 603022



V. N. Chuvildeev
N. I. Lobachevsky Nizhniy Novgorod State University
Russian Federation

Vladimir N. Chuvildeev

23, prosp. Gagarina, Nizhny Novgorod, 603022



N. V. Melekhin
N. I. Lobachevsky Nizhniy Novgorod State University
Russian Federation

Nikolai V. Melekhin

23, prosp. Gagarina, Nizhny Novgorod, 603022



References

1. Johnson G. R., Holmquist T. J. Response of boron carbide subjected to large strains, high strain rates, and high pressures / J. Appl. Phys. 1999. Vol. 85. Issue 12. P. 8060 – 8073. DOI: 10.1063/1.370643

2. Ashby M. F., Hallam S. D. (Née Cooksley) The failure of brittle solids containing small cracks under compressive stress states / Acta Metallurgica. 1986. Vol. 34. Issue 3. P. 497 – 510. DOI: 10.1016/0001-6160(86)90086-6

3. Sammis C. G., Ashby M. F. The failure of brittle porous solids under compressive stress states / Acta Metallurgica. 1986. Vol. 34. Issue 3. P. 511 – 526. DOI: 10.1016/0001-6160(86)90087-8.

4. Islam M. R. I., Zheng J. Q., Batra R. C. Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models / Int. J. Impact Eng. 2020. Vol. 137. P. 49. DOI: 10.1016/j.ijimpeng.2019.103469

5. Wang J., Yin Y., Luo C. Johnson – Holmquist-II (JH-2) Constitutive Model for Rock Materials: Parameter Determination and Application in Tunnel Smooth Blasting / Appl. Sci. 2018. Vol. 8. Issue 9. P. 23. DOI: 10.3390/app8091675

6. Dyachkov S. A., Parshikov A. N., Egorova M. S., et al. Explicit failure model for boron carbide ceramics under shock loading / J. Appl. Phys. 2018. Vol. 124. Issue 8. P. 11. DOI: 10.1063/1.5043418

7. Johnson G. R., Holmquist T. J. An improved computational constitutive model for brittle materials / AIP Conference Proceedings. 1994. Vol. 309. Issue 1. P. 981 – 984. DOI: 10.1063/1.46199

8. Kanel G. I. Shock waves in solid state physics. — Moscow: Fizmatlit, 2018. — 208 p. [in Russian].

9. Feodosiev V. I. Strength of materials. 10th edition. — Moscow: Izd. MGTU im. N. É. Baumana, 1999. — 592 p. [in Russian].

10. Grady D. E. Dynamic properties of ceramic materials. — SAND94-3266. — Albuquerque, NM – Livermore, CA: Sandia National Laboratories, 1995. — 99 p.

11. Holmquist T. J., Johnson G. R., Grady D. E., et al. High strain rate properties and constitutive modeling of glass. — SAND-95-0379C. — Haifa (Israel): Proceedings of Fifteenth International Symposium on Ballistics, 1995. — 14 p. DOI: 10.2172/41367

12. Wilkins M. L., Cline C. F., Honodel C. A. Fourth progress report of light armor program. — UCRL-50694. — Livermore, CA: Lawrence Radiation Laboratory, 1969. — 56 p.

13. Bassett W. A., Weathers M. S., Wu T. C., and Holmquist T. J. Compressibility of SiC up to 68.4 GPa / J. Appl. Phys. 1993. Vol. 74. Issue 6. P. 3824 – 3826. DOI: 10.1063/1.354476

14. Feng R., Raiser G. F., Gupta Y. M. Material strength and inelastic deformation of silicon carbide under shock wave compression / J. Appl. Phys. 1998. Vol. 83. Issue 1. P. 79 – 86. DOI: 10.1063/1.366704

15. Holmquist T. J., Rajendran A. M., Templeton D. W., Bishnoi K. D. A Ceramic Armor Material Database. — AD-a362 926. — Warren, Michigan: Tacom Research Development and Engineering Center, 1999. — 240 p.


Review

For citations:


Krutova O.G., Berendeev N.N., Chuvildeev V.N., Melekhin N.V. Procedure for determining the constants of JH-2 (Johnson – Holmquist) dynamic fracture model for brittle materials. Industrial laboratory. Diagnostics of materials. 2021;87(12):48-54. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-12-56-62

Views: 849


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)