Pixel response function of BLPP-2000 and BLPP-4000 photodetector arrays
https://doi.org/10.26896/1028-6861-2022-88-1-II-22-26
Abstract
Photodetector arrays are widely used in atomic emission spectrometry as a part of spectrum analyzers. When the width of a spectral line is comparable with the array structure pitch, the recorded signal becomes dependent on the position of the line relative to the cells of the photodetector array. This dependence is usually explained by the loss of high spatial frequencies according to the Kotelnikov theorem, and the pixel response function of the cells (the dependence of the cell output signal on the position of a point light spot on the cell surface) is considered rectangular and determined by the cell size. However, this approximation can sometimes lead to significant errors. The aim of this study is to determine experimentally the pixel response function of BLPP-2000 and BLPP-4000 photodetector array cells used in high-speed MAES analyzers by precise moving of a light spot with a diameter of 0.7 μm and a wavelength of 405 nm. The array cell width is 14 and 7 μm, respectively. It is shown that when a light spot enters between the cells of BLPP-2000 and BLPP-4000 photodetectors, no information is lost. As for the cells of back-illuminated CCD BLPP-2000 arrays, the coefficient of mutual influence is 30% and the integral signal does not depend on the position of the light spot. The presence of isolating areas (loci) between the cells in CMOS BLPP-4000 arrays led to insignificant oscillations of the integral signal depending on the position of the light spot, but, however, provided reduction of the coefficient of mutual influence to 5%.
About the Authors
P. V. VaschenkoRussian Federation
Pavel V. Vaschenko
630090, Novosibirsk, prosp. Akademika Koptyuga, 1
630090, Novosibirsk, prosp. Akademika Koptyuga, 1-100
V. A. Labusov
Russian Federation
Vladimir A. Labusov
630090, Novosibirsk, prosp. Akademika Koptyuga, 1
630090, Novosibirsk, prosp. Akademika Koptyuga, 1-100
630073, Novosibirsk, prosp. K. Marksa, 20
R. V. Shimansky
Russian Federation
Ruslan V. Shimansky
630090, Novosibirsk, prosp. Akademika Koptyuga, 1
References
1. Babin S. A., Selyunin D. O., Labusov V. A. High-Speed Multichannel MAES Analyzers Based on BLPP-2000 and BLPP-4000 Photodetector Arrays / Inorg. Mater. 2020. Vol. 56. N 14. P. 1431 – 1435. DOI:10.1134/S0020168520140022
2. Danilova Y. V., Savelyeva V. B., Danilov B. S., et al. Noble metals in rocks of the sarma group: phase composition and element associations / Geochem. Int. 2021. Vol. 59. N 3. P. 301 – 313. DOI:10.1134/S001670292101002X
3. Shevelev G. A., Vasilenko L. I., Kamenskaya E. N., et al. Noble and Rare Metals in Some Coal Deposits of Kazakhstan / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1. Part II. P. 38 – 44 [in Russian]. DOI:10.26896/1028-6861-2019-85-1-II-38-44
4. Pelipasov O. V., Polyakova E. V. Matrix effects in atmospheric pressure nitrogen microwave induced plasma optical emission spectrometry / J. Anal. At. Spectrom. 2020. Vol. 35. P. 1389 – 1394. DOI:10.1039/D0JA00065E
5. Polyakova E. V., Pelipasov O. V. Plasma molecular species and matrix effects in the Hummer cavity microwave induced plasma optical emission spectrometry / Spectrochim. Acta. Part B. 2020. Vol. 173. 105988. DOI:10.1016/j.sab.2020.105988
6. Zarubin I. A. Capabilities of a Compact Kolibri-2 Spectrometer in Atomic Emission Spectral Analysis / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 1. Part II. P. 114 – 117 [in Russian]. DOI:10.26896/1028-6861-2018-83-1-II-114-117
7. Vaschenko P. V., Labusov V. A., Lihachev A. V. Recovery of the radiation intensity distribution at the surface of a multi-element solid state detector / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 1. Part II. P. 94 – 95 [in Russian].
8. Niemi S., Cropper M., Szafraniec M., Kitching T. Measuring a charge-coupled device point spread function: euclid visible instrument CCD273-84 PSF performance / Exp. Astron. 2015. Vol. 39. P. 207 – 231. DOI:10.1007/s10686-015-9440-7
9. Mahato S., De Ridder J., Meynants G., et al. Measuring Intra-pixel Sensitivity Variations of a CMOS Image Sensor / IEEE Sens. J. 2018. Vol. 18. N 7. P. 2722 – 2728. DOI:10.1109/JSEN.2018.2798698
10. Fumo P., Waldron E., Laine Juha-Pekka, Evans G. Pixel response function experimental techniques and analysis of active pixel sensor star cameras / J. Astron. Telesc., Instr. Syst. 2015. Vol. 1. N 2. 028002. DOI:10.1117/1.JATIS.1.2.028002
11. Tharun B., Georgiev T., Gille J., Goma S. Contrast computation methods for interferometric measurement of sensor modulation transfer function / J. Electron. Imaging. 2018. Vol. 27. N 1. 013015. DOI:10.1117/1.JEI.27.1.013015
12. Belousov D. A., Poleshchuk A. G., Khomutov V. N. Device for Characterization of the Diffraction Pattern of Computer-Generated Holograms in a Wide Angular Range / Optoelectron. Instrument. Proc. 2018. Vol. 54. P. 139 – 145. DOI:10.3103/S8756699018020048
13. Veiko V. P., Korol’kov V. P., Poleshchuk A. G., et al. Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures / Quantum Electron. 2011. Vol. 41. P. 631 – 636. DOI:10.1070/QE2011V041N07ABEH014528
14. Poleshchuk A. G., Korolkov V. P. Fabrication and certification of high-quality and large-aperture CGHs for optical testing / Proc. of the EOS Topical Meeting on Diffractive Optics, Rochester, NY, USA, 9 – 11 October 2006. P. 20 – 23. DOI:10.1364/OFT.2006.OFTuB2
15. Poleshchuk A. G., Korolkov V. P., Cherkashin V. V., et al. Minimization methods of direct laser recording errors of diffractive optical elements / Optoelectron. Instrument. Proc. 2002. Vol. 38. N 3. P. 3 – 19.
Review
For citations:
Vaschenko P.V., Labusov V.A., Shimansky R.V. Pixel response function of BLPP-2000 and BLPP-4000 photodetector arrays. Industrial laboratory. Diagnostics of materials. 2022;88(1(II)):22-26. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-II-22-26