Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Determination of trace elements in liquid samples with organic matrix by arc atomic emission spectrometry

https://doi.org/10.26896/1028-6861-2022-88-1-II-63-68

Abstract

Conditions for the analysis of liquid samples on a MFS-8 spectrometer upgraded with a MAES photodiode array by arc atomic emission spectrometry with dry residue technique are specified. It is shown that optimization of the electrode shape along with the method of calculating the intensity of the spectral line and time of the base exposure leads to the expansion of the operating range of calibration curves. The arc plasma parameters (temperature and electron density) are similar when the spectra of dry residues of aqueous solutions, saliva, blood serum, and dry wine are excited. This provides direct (without digestion) determination of trace elements in these samples with the detection limits at a level of μg/liter. When a sample of vegetable oil is deposited on the electrode, it is likely to be absorbed in depth and does not enter the arc plasma in full, which makes the direct analysis impossible. Nevertheless, the determination of trace elements in oils by the dry residue technique is possible after acid digestion of the sample.

About the Authors

S. S. Savinov
Institute of Chemistry, St. Petersburg State University
Russian Federation

Sergey S. Savinov

199034, St. Petersburg, Universitetskaya nab., 7/9



A. D. Titova
Institute of Chemistry, St. Petersburg State University; National Research Center Kurchatov Institute — «Prometey» Central Research Institute of Structural Materials
Russian Federation

Anna D. Titova

199034, St. Petersburg, Universitetskaya nab., 7/9
191015, St. Petersburg, Shpalernaya ul., 49



N. A. Zverkov
Institute of Chemistry, St. Petersburg State University; ITMO University
Russian Federation

Nikolai A. Zverkov

199034, St. Petersburg, Universitetskaya nab., 7/9
197101, St. Petersburg, Kronverksky prosp., 49



A. I. Drobyshev
Institute of Chemistry, St. Petersburg State University
Russian Federation

Anatoly I. Drobyshev

199034, St. Petersburg, Universitetskaya nab., 7/9



References

1. Taylor A., Catchpole A., Day M. P., et al. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages / J. Anal. At. Spectrom. 2020. Vol. 35. N 3. P. 426 – 454. DOI:10.1039/D0JA90005B

2. Patriarca M., Barlow N., Cross A., et al. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages / J. Anal. At. Spectrom. 2021. Vol. 36. N 3. P. 452 – 511. DOI:D1JA90007B

3. Monaci F., Bargagli E., Bravi F., Rottoli P. Concentrations of major elements and mercury in unstimulated human saliva / Biol. Trace Elem. Res. 2002. Vol. 89. N 3. P. 193 – 203. DOI:10.1385/BTER:89:3:193

4. Lopez-Jornet P., Juan H., Alvaro P. F. Mineral and trace element analysis of saliva from patients with BMS: a cross-sectional prospective controlled clinical study / J. Oral Pathol. Med. 2014. Vol. 43. N 2. P. 111 – 116. DOI:10.1111/jop.12105

5. Vojinovic T., Jaukovic M., Potpara Z., et al. Determination of heavy metals in wine products in Montenegro in order to protect consumer health / Prog. Nutr. 2020. Vol. 22. N 3. e2020029. DOI:10.23751/pn.v22i3.9644

6. Nizamani P., Afridi H. I., Kazi T. G., et al. Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients / Toxicol. Rep. 2019. Vol. 6. P. 1230 – 1239. DOI:10.1016/j.toxrep.2019.11.011

7. Gajek M., Pawlaczyk A., Szynkowska-Jozwik M. I. Multi-elemental analysis of wine samples in relation to their type, origin, and grape variety / Molecules. 2021. Vol. 26. N 1. P. 214. DOI:10.3390/molecules26010214

8. Latorre M., Herbello-Hermelo P., Pena-Farfal C., et al. Size exclusion chromatography — inductively coupled plasma-mass spectrometry for determining metal-low molecular weight compound complexes in natural wines / Talanta. 2019. Vol. 195. P. 558 – 565. DOI:10.1016/j.talanta.2018.11.055

9. Khalafyan A. A., Temerdashev Z. A., Kaunova A. A., et al. Determination of the wine variety and geographical origin of white wines using neural network technologies / J. Anal. Chem. 2019. Vol. 74. N 6. P. 617 – 624. DOI:10.1134/S1061934819060042

10. Selih V. S., Sala M., Drgan V. Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia / Food Chem. 2014. Vol. 153. P. 414 – 423. DOI:10.1016/j.foodchem.2013.12.081

11. Olmedo P., Pla A., Hernandez A. F., et al. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry / Anal. Chim. Acta. 2010. Vol. 659. N 1 – 2. P. 60 – 67. DOI:10.1016/j.aca.2009.11.056

12. de Almeida G. R. C., Tavares C. F. D., de Souza A. M., et al. Whole blood, serum, and saliva lead concentrations in 6-to 8-year-old children / Sci. Total Environ. 2010. Vol. 408. N 7. P. 1551 – 1556. DOI:10.1016/j.scitotenv.2009.12.034

13. Guo W., Dong S., Jin Y., et al. Evaluation of variation of saliva iodine and recommendations for sample size and sampling time: Implications for assessing iodine nutritional status / Clin. Nutr. 2021. Vol. 40. N 5. P. 3559 – 3566. DOI:10.1016/j.clnu.2020.12.010

14. Savinov S. S., Anisimov A. A. Effect of Conditions for Sampling of Human Saliva on the Results of Determination of Macro- and Micronutrients / J. Anal. Chem. 2020. Vol. 75. N 4. P. 453 – 458. DOI:10.1134/S1061934820040139

15. Novo D. L., Mello J. E., Rondan F. S., et al. Bromine and iodine determination in human saliva: Challenges in the development of an accurate method / Talanta. 2019. Vol. 191. P. 415 – 421. DOI:10.1016/j.talanta.2018.08.081

16. Solomentseva N. S., Shuvaeva O. V. Determination of trace elements in natural waters by atomic emission spectrometry of solution dry residues at the ends of graphite electrodes / J. Anal. Chem. 2007. Vol. 62. N 7. P. 645 – 649. DOI:10.1134/S1061934807070064

17. Drobyshev A. I., Emelina O. I. Analysis of water samples and aqueous solutions by atomic emission spectrometry using an MFS-8 spectrometer / J. Anal. Chem. 1999. Vol. 54. N 12. P. 1152 – 1154.

18. Drobyshev A. I., Savinov S. S. An experimental study of the luminosity of an MFC-MAES-based digital spectrograph / Opt. Spectrosc. 2016. Vol. 120. N 2. P. 335 – 338. DOI:10.1134/S0030400X16020077

19. Labusov V. A., Garanin V. G., Shelpakova I. R. Multichannel analyzers of atomic emission spectra: Current state and analytical potentials / J. Anal. Chem. 2012. Vol. 67. N 7. P. 632 – 641. DOI:10.1134/S1061934812070040

20. Putmakov A. N., Popov V. I., Labusov V. A., Borisov A. V. New possibilities of modernized spectral instruments / Zavod. Lab. Diagn. Mater. 2007. Vol. 73. Special Issue. P. 26 – 28 [in Russian].

21. Labusov V. A., Garanin V. G., Zarubin I. A. New Spectral Complexes Based on MAES Analyzers / Inorg. Mater. 2018. Vol. 54. N 14. P. 1443 – 1448. DOI:10.1134/S0020168518140133

22. Drobyshev A. I., Savinov S. S. On certain features of spectrum recording and photometric measurements of spectral lines using a MFS-MAES-based digital spectrograph / Instrum. Exp. Tech. 2013. Vol. 56. N 6. P. 693 – 696. DOI:10.1134/S0020441213050138


Review

For citations:


Savinov S.S., Titova A.D., Zverkov N.A., Drobyshev A.I. Determination of trace elements in liquid samples with organic matrix by arc atomic emission spectrometry. Industrial laboratory. Diagnostics of materials. 2022;88(1(II)):63-68. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-II-63-68

Views: 385


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)