Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Estimation of the possibility of controlling the temperature of an electrothermal atomizer by the signals of the element absorption

https://doi.org/10.26896/1028-6861-2022-88-1-II-83-88

Abstract

The current system of the temperature control for the electrothermal atomizer (ETA) used in atomic absorption spectrometers for simultaneous multielement analysis, is unable to provide high characteristics of the analysis when the calibration of the built-in optical pyrometer becomes irrelevant due to the natural wear of graphite cells upon operation. As the control of the ETA efficiency using an external calibrated pyrometer is laborious, it is advisable to use the dependence of temperature on the time of appearance of atomic vapors of elements. We have studied the possibility of controlling the temperature of graphite cells in the electrothermal atomizer of a multielement atomic absorption spectrometer with a continuous spectrum source by the time dependence of absorption signals of chemical elements. The correctness of the calibration was checked by recording the absorption signals of a sample containing chemical elements of different volatility with subsequent evaluation of the time and the corresponding temperature of the appearance of atomic vapors of the elements. The obtained temperatures of the appearance of atomic vapors of Al, Cd, In, Mn, Ni, Pb and V ranged within 640 – 1940°C. When the heating rate is changed by a factor of more than 3, the vapor appearance temperature for the selected elements differs by less than 5%. Using a deliberate change in the calibration of the built-in optical pyrometer, we have simulated a situation in which the relevance of the calibration was lost, e.g., due to the wear of a graphite cell. The experiment revealed a shift of the correlation graph between the actual and measured temperatures of the appearance of vapors of elements in the case of incorrect calibration of the feedback pyrometer in the coordinates «Real temperatures» — «Measured temperatures». The method presented in the study can be used to check the correctness of the calibration of the built-in pyrometer and to determine the necessity of replacing a worn graphite cell.

About the Authors

N. A. Kolosov
Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences; VMK-Optoelektronika
Russian Federation

Nikita A. Kolosov

630090, Novosibirsk, prosp. Akademika Koptyuga, 1
630090, Novosibirsk, prosp. Akademika Koptyuga, 1 – 100



S. S. Boldova
Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences; VMK-Optoelektronika
Russian Federation

Svetlana S. Boldova

630090, Novosibirsk, prosp. Akademika Koptyuga, 1
630090, Novosibirsk, prosp. Akademika Koptyuga, 1 – 100



V. A. Labusov
Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences; VMK-Optoelektronika; Novosibirsk State Technical University
Russian Federation

Vladimir A. Labusov

630090, Novosibirsk, prosp. Akademika Koptyuga, 1
630090, Novosibirsk, prosp. Akademika Koptyuga, 1 – 100
630073, Novosibirsk, prosp. K. Marksa, 20



References

1. Harnly J. M. Multielement atomic absorption with a continuum source / Anal. Chem. 1986. Vol. 58. N 8. P. 933A – 943A. DOI:10.1021/ac00121a003

2. Harnly J. M. Instrumentation for simultaneous multielement atomic absorption spectrometry with graphite furnace atomization / Anal. Bioanal. Chem. 1996. Vol. 355. N 5 – 6. P. 501 – 509. DOI:10.1007/s0021663550501

3. Katskov D. A. An introduction to multi-element atomic-absorption analysis / Analit. Kontrol’. 2018. Vol. 22. N 4. P. 350 – 442 [in Russian]. DOI:10.15826/analitika.2018.22.4.001

4. Katskov D. A. Simultaneous multi-element determination in electrothermal atomic-absorption spectrometry with electrothermal atomization / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1. Part I. P. 5 – 17 [in Russian]. DOI:10.26896/1028-6861-2019-85-1-I-5-17

5. Labusov V. A., Boldova S. S., Selyunin D. O., et al. High-resolution atomic absorption spectrometer for the simultaneous multielement analysis / Analit. Kontrol’. 2018. Vol. 22. N 4. P. 451 – 457 [in Russian]. DOI:10.15826/analitika.2018.22.4.003

6. Lundgren G., Lundmark L., Johansson G. Temperature controlled heating of the graphite tube atomizer in flameless atomic absorption spectrometry / Anal. Chem. 1974. Vol. 46. N 8. P. 1028 – 1031. DOI:10.1021/ac60344a025

7. Frunze A. V., Frunze A. A. New pyrometers TERMOKONT for measuring the temperature of metals based on photodiodes / Datch. Sist. 2014. N 3. P. 59 – 61 [in Russian].

8. Magunov A. N. Spectral pyrometry. — Moscow: Fizmatlit, 2012. — 248 p. [in Russian].

9. Magunov A. N. Temperature measurement of objects with unknown emissivity using a technique of spectral pyrometry / Nauch. Pribor. 2010. Vol. 20. N 3. P. 22 – 26 [in Russian].

10. Pupyshev A. A. Atomic Absorption Spectral Analysis. — Moscow: Tekhnosfera, 2009. — 784 p. [in Russian].

11. Boldova S. S., Labusov V. A., Katskov D. A., et al. «Kolibri-AAS» atomic absorption spectrometer for the simultaneous multielement analysis / Analit. Kontrol’. 2018. Vol. 22. N 4. P. 443 – 450 [in Russian]. DOI:10.15826/analitika.2018.22.4.002

12. Zarubin I. A. Capabilities of a Compact Kolibri-2 Spectrometer in Atomic Emission Spectral Analysis / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 1. Part II. P. 114 – 117 [in Russian]. DOI:10.26896/1028-6861-2018-83-1-II-114-117

13. Garanin V. G., Neklyudov O. A., Petrochenko D. V., et al. «Atom» software for atomic spectral analysis / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 1 – 2. P. 103 – 111 [in Russian]. DOI:10.26896/1028-6861-2019-85-1-II-103-111

14. Welz B., Sperling M. Atomic Absorption Spectrometry. 3rd ed. — Weinheim, Germany: Wiley-VCH, 1999. — 941 p. DOI:10.1002/9783527611690

15. Welz B., Becker-Ross H. Florek S., Heitmann U. High-resolution Continuum Source AAS: The Better Way to do Atomic Absorption Spectrometry. — Weinheim, Germany: Wiley-VCH, 2005. — 296 p.


Review

For citations:


Kolosov N.A., Boldova S.S., Labusov V.A. Estimation of the possibility of controlling the temperature of an electrothermal atomizer by the signals of the element absorption. Industrial laboratory. Diagnostics of materials. 2022;88(1(II)):83-88. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-II-83-88

Views: 433


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)