Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Application of MIP-sensors to the determination of preservatives in non-alcoholic drinks

https://doi.org/10.26896/1028-6861-2022-88-8-10-16

Abstract

The piezosensors modified with a molecularly imprinted polymer (MIP) with potassium sorbate (MIP-E202) and sodium benzoate (MIP-E211) imprints are tested and implemented in the determination of preservatives in soft drinks. Molecularly imprinted polymers were synthesized by noncovalent imprinting on the base of copolymer of 1,2,4,5-benzene tetracarboxylic acid dianhydride and 4,4’-diaminodiphenyl oxide in N,N-dimethylformamide (DMF) in the presence of templates. Piezoelectric sensors based on MIP and non-imprinted polymer (polyimide) were compared. High values of the imprinting factor (IF) and selectivity coefficient (k) obtained for MIP-E202 (IF = 5.4) and MIP-E211 (IF = 6.0) sensors indicated better selectivity and ability of MIP-based sensors to recognize target molecules than piezosensors modified with a reference polymer. The detectable concentrations range within 5 – 500 mg/liter, the detection limits for potassium sorbate and sodium benzoate are 1.6 and 2.0 mg/liter, respectively. Correctness of the preservative determination in model solutions was verified using the spike test. MIP-based sensors appeared sensitive to the preservative determination and insensitive to interfering substances. The matrix composition of the non-alcoholic drinks did not affect the value of the analytical signal of the piezoelectric sensor. High performance liquid chromatography (HPLC) was used as a reference method. The results of potassium sorbate and sodium benzoate determination in non-alcoholic drinks using piezosensors match the HPLC data rather well, their content in the studied soft drinks being 130 – 176 and 129 – 146 mg/liter, respectively.

About the Authors

Hoang Yen Vu
Voronezh State University; Ho Chi Minh City University of Food Industry
Russian Federation

Vu Hoang Yen

1 Universitetskaya pl., Voronezh, 39401;

140, Le Trong Tan, Ho Chi Minh City, 72009, Vietnam



A. N. Zyablov
Voronezh State University
Russian Federation

Alexander N. Zyablov

1 Universitetskaya pl., Voronezh, 394018



References

1. Mota F. J. M., Ferreira I. M. P. L. V. O., Cunha S. C., et al. Optimisation of extraction procedures for analysis of benzoic and sorbic acids in foodstuffs / Food Chem. 2003. Vol. 82. N 3. P. 469–473. DOI: 10.1016/s0308-8146(03)00116-x

2. Tochilina R. P., Sklepovich T. S., Zakharov V. A. Determination of the mass concentration of benzoic acid in non-alcoholic and low-alcohol products by the spectrophotometric method / Vestn. VGUIT. 2020. Vol. 82. N 3. P. 117–122 [in Russian]. DOI: 10.20914/2310-1202-2020-3-117-122

3. Yen T. H. Hoang, An T. L. Vu. Sodium Benzoate and Potassium Sorbate in Processed Meat Products Collected in Ho Chi Minh City, Vietnam / Int. J. Adv. Sci. Eng. Inf. Technol. 2016. Vol. 6. N 4. P. 477–482. DOI: 10.18517/ijaseit.6.4.876

4. Petanovska-Ilievska B., Velkoska-Markovska L., Jankulovska M. S. Development of Reverse-Phase High-Performance Liquid Chromatography Method for Simultaneous Determination of Sodium Benzoate and Potassium Sorbate in Beverages / Acta Chromatogr. 2017. Vol. 29. N 3. P. 345–358. DOI: 10.1556/1326.2017.29.3.05

5. Mahboubifar M., Sobhani Z., Dehghanzadeh G., et al. A Comparison between UV Spectrophotometer and High-performance Liquid Chromatography Method for the Analysis of Sodium Benzoate and Potassium Sorbate in Food Products / Food Anal. Methods. 2011. Vol. 4. N 2. P. 150–154. DOI: 10.1007/s12161-010-9158-0

6. Ogunleye D. T., Oyeyiola A. O., Onwordi C. T., et al. Spectrophotometric and high performance liquid chromatograhic determination of sodium benzoate and potassium sorbate in some soft drinks / Unilag J. Med. Sci. Technol. 2017. Vol. 5. N 1. P. 168–178.

7. Lisichkin G. V., Krutyakov Yu. A. Molecularly imprinted materials: synthesis, properties, applications / Russ. Chem. Rev. 2006. Vol. 75. N 10. P. 998–1017 [in Russian]. DOI: 10.1070/RC2006v075n10ABEH003618

8. Turiel E., Martín-Esteban A. Molecularly imprinted polymers for sample preparation: a review / Anal. Chim. Acta. 2010. Vol. 668. P. 87–99. DOI: 10.1016/j.aca.2010.04.019

9. Unger C., Lieberzeit P. A. Molecularly imprinted thin film surfaces in sensing: Chances and challenges / React. Funct. Polym. 2021. Vol. 161. P. 1–10. DOI: 10.1016/j.reactfunctpolym.2021.104855

10. Bessonov M. I. Polyimides — a new class of heat-resistant polymers. — Leningrad: Nauka, 1983. — 328 p. [in Russian].

11. Dmitrienko E. V., Pyshnaya I. A., Martyanov O. N., Pyshnyi D. Molecularly imprinted polymers for biomedical and biotechnological applications / Russ. Chem. Rev. 2016. Vol. 85. N 5. P. 513–536 [in Russian]. DOI: 10.1070/RCR4542

12. Dmitrienko E. V., Bulushev R. D., Haupt K., et al. A simple approach to prepare molecularly imprinted polymers from nylon-6 / J. Mol. Recognit. 2013. Vol. 26. N 8. P. 368–375. DOI: 10.1002/jmr.2281

13. Vu Hoang Yen, Cao Nhat Linh, Zyablov A. N. Analysis of the properties of films of moleculary imprinted polymers based on polyimide / Sorb. Khromatogr. Prots. 2021. Vol. 21. N 3. P. 360–368 [in Russian]. DOI: 10.17308/sorpchrom.2021.21/3469

14. Zyablov A. N., Shapovalova A. A. Determination of the residual amounts of cefotaxime in liquid media using piezoelectric sensors / Zavod. Lab. Diagn. Mater. 2022. Vol. 88. N 2. P. 15–20 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-15-20

15. Zhao C., Jia G., Lu W., et al. A piezoelectric magnetic molecularly imprinted surface sensor for the detection of Sudan I / J. Alloys Compd. 2017. Vol. 710. P. 711–716. DOI: 10.1016/j.jallcom.2017.03.316

16. Karaseva N. A., Pluhar B., Beliaeva E. A., et al. Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors / Sens. Actuators B. 2019. Vol. 280. P. 272–279. DOI: 10.1016/j.snb.2018.10.022

17. Sroysee W., Suticha Chunta S., Amatatongchai M., et al. Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors / Phys. Med. 2019. Vol. 7. P. 1 – 7. DOI: 10.1016/j.phmed.2019.100016

18. Pan M., Li R., Xu L., et al. Reproducible molecularly imprinted piezoelectric sensor for accurate and sensitive detection of ractopamine in swine and feed products / Sensors. 2018. Vol. 18. P. 1870 – 1882. DOI: 10.3390/s18061870

19. Ermolaeva T. N., Farafonova O. V., Bessonov O. I. Synthesis and use of thin polymer films with molecular imprints of salbutamol in quartz crystal microbalance sensors / J. Anal. Chem. 2019. Vol. 74. N 9 Suppl. P. S1–S8. DOI: 10.1134/S106193481909017X

20. Cao Nhat Linh, Duvanova O. V., Nikitina S. Yu., Zyablov A. N. The use of piezosensors for determination of carboxylic acids in the intermediate products of edible ethanol production / Zavod. Lab. Diagn. Mat. 2019. Vol. 85. N 4. P. 11–16 [in Russian]. DOI: 10.26896/1028-6861-2019-85-4-11-16

21. Dvorkin V. I. Metrology and quality assurance of chemical analysis. — Moscow: Tekhnosfera, 2019. — 318 p. [in Russian].


Review

For citations:


Vu H., Zyablov A.N. Application of MIP-sensors to the determination of preservatives in non-alcoholic drinks. Industrial laboratory. Diagnostics of materials. 2022;88(8):10-16. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-8-10-16

Views: 432


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)