Методы определения характеристик адгезии в системах с теплозащитными покрытиями
https://doi.org/10.26896/1028-6861-2022-88-12-51-63
Аннотация
Системы теплозащитных покрытий (ТЗП) широко используют в современных высокотемпературных авиационных газовых турбинах для защиты поверхностей лопаток от газовой коррозии и воздействия высоких рабочих температур. Для прогнозирования долговечности систем с ТЗП одним из ключевых является параметр, характеризующий сопротивление отслоению (адгезию) на поверхностях раздела. Цель работы — анализ существующих методов количественного определения характеристик адгезии для многослойных теплозащитных покрытий и защитных оксидных слоев на поверхности жаропрочных сплавов на основе никеля и выявление причин разброса показателей адгезии. Рассмотрены теоретические предпосылки для определения характеристик адгезии. Показано отсутствие национальных стандартов для их оценки и отмечен значительный разброс значений, полученных при использовании международных документов, регламентирующих испытания, и авторских методик. Значения интенсивности высвобождения упругой энергии деформации варьируются 0,3 до 230 Дж/м2 в зависимости от метода определения, условий эксперимента и параметров системы. Причины разброса значений условно разделены на две группы: 1 — внутренние, обусловленные особенностями формирования слоев ТЗП и температурным воздействием, определяющие величину и характер распределения остаточных деформаций и напряжений, а также направление, по которому инициируется разрушение; 2 — внешние, обусловленные особенностями проведения испытаний и обработки результатов. Показана необходимость комплексного подхода к оценке характеристик адгезии, учитывающего влияние внешних и внутренних факторов.
Ключевые слова
Об авторах
Е. Н. ФедороваРоссия
Федорова Елена Николаевна.
660041, Красноярск, Свободный просп., д. 79; 660049, Красноярск, просп. Мира, д. 53
Н. В. Суходоева
Россия
Суходоева Надежда Вячеславовна.
660041, Красноярск, Свободный просп., д. 79
В. В. Москвичев
Россия
Москвичев Владимир Викторович.
660041, Красноярск, Свободный просп., д. 79; 660049, Красноярск, просп. Мира, д. 53
Н. В. Огорельцева
Россия
Огорельцева Нина Валерьевна.
660041, Красноярск, Свободный просп., д. 79
Ю. О. Климкин
Россия
Климкин Юрий Олегович.
660041, Красноярск, Свободный просп., д. 79
Список литературы
1. Evans Н. Е. Oxidation failure of TBC systems: An assessment of mechanisms / Surf. Coat. Technol. 2011. Vol. 206. P. 1512 -1521.
2. Kofstad P. High Temperature Corrosion. — New York: Elsevier Science Publishing Co., 1988. — 558 p.
3. Fedorova E., Braccini M., Parry V., et al. Comparison of damaging behavior of oxide scales grown on austenitic stainless steels using tensile test and cyclic thermogravimetry / Corrosion Sci. 2016. Vol. 103. P. 145 - 156. DOI: 10.1016/J.CORSCI.2015.11.012
4. Zaytzev A. N., Aleksandrova Yu. R., Yagopolsky A. G. Comparative analysis of methods for assessing adhesion strength of thermal spray coatings / Izv. Vuzov. Machinostroenie. 2021. N 5(734). P. 48 - 59 [in Russian]. DOI: 10.18698/0536-1044-2021-5-48-59
5. Hofinger I., Oechsner M., Bahr H.-A., Swain M. V. Modified four-point bend specimen for determining the interface fracture energy for thin, brittle layers / Int. J. Fracture. 1998. Vol. 92. P. 213 - 220. DOI: 10.1023/A:1007530932726
6. Thery R-Y., Poulain M., Dupeux M., Braccini M. Adhesion energy of a YPSZ EB-PVD layer in two thermal barrier coating systems / Surface Coatings Technol. 2007. Vol. 202. N 4 - 7. P. 648-652. DOI: 10.1016/j.surfcoat.2007.06.014
7. Vaunois J.-R., Poulain M., Kanoute P., Chaboche J.-L. Development of bending tests for near shear mode interfacial toughness measurement of EB-PVD thermal barrier coatings / Eng. Fracture Meeh. 2017. Vol. 171. P. 110 - 134. DOI: 10.1016/j.engfracmech.2016.11.009
8. Nagi M. N., Evans W. T., Hall D. J., Saunders S. R. J. An in situ investigation of the tensile failure of oxide scales / Oxid. Met. 1994. Vol. 42. P. 431 - 449. DOI: 10.1007/BF01046759
9. Ambhorn S. C., Dherbey F. R., Toscan E., et al. Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test / Mater. Sci. Technol. 2007. Vol. 23. P. 497 - 501. DOI: 10.1179/174328407X168964
10. Zhao X., Liu J., Rickerby D. S., et al. Evolution of interfacial toughness of a thermal barrier system with a Pt-diffused y/y’ bond coat / Acta Mater. 2011. Vol. 59. P. 6401 - 6411. DOI: 10.1016/j.actamat.2011.07.001
11. Liu C., Zhang X., Chen Y., Xiao R Effect of superalloy substrate on the lifetime and interfacial toughness of electron beam physical vapor deposited thermal barrier coatings / Surface Coatings Technol. 2019. Vol. 378. P. 124937. DOI: 10.1016/j.surfcoat.2019.124937
12. Zhu W., Yang L., Guo J. W., et al. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model / Int. J. Plasticity. 2015. Vol. 64. P. 76 - 87. DOI: 10.1016/j.ijplas.2014.08.003
13. Kim S. S., Liu Y. E, Kagawa Y. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by pushout method / Acta Mater. 2007. Vol. 55. P. 3771 - 3781. DOI: 10.1016/j.actamat.2007.02.027
14. Guo S. Q., Mumm D. R., Karlsson A. M., Kagawa Y. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method / Scripta Mater. 2005. Vol. 53. P. 1043 - 1048. DOI: 10.1016/j.scriptamat.2005.07.012
15. Hasegawa M., Yamaoka S. Delamination property of modeled air plasma sprayed-thermal barrier coatings under shear loading: effect of difference in chemical composition of bond coat / Proc. Mater. Sci. 2016. Vol. 12. P. 83 - 88. DOI: 10.1016/j.mspro.2016.03.015
16. Hasegawa M., Endo T., Fukutomi H. Effects of Heat Exposure Time and Temperature on the Delamination Behavior of Air Plasma-Sprayed Thermal Barrier Coatings under Shear Loading / Mater. Trans. 2016. Vol. 57. N 7. P. 1138 - 1146. DOI: 10.2320/matertrans.M2016077
17. Guipont V., Begue G., Fabre G., Maurel V. Buckling and interface strength analyses of thermal barrier coatings combining Laser Shock Adhesion Test to thermal cycling / Surface Coatings Technol. 2019. Vol. 378. P. 124938. DOI: 10.1016/j.surfcoat.2019.124938
18. Vasinonta A., Beuth J. L. Measurement of interfacial toughness in thermal barrier coating systems by indentation / Eng. Fract. Meeh. 2001. Vol. 68. P. 843 - 860. DOI: 10.1016/S0013-7944(00)00130-2
19. Kiyohiro I., Takashi S., Makoto E., Masayuki A. Improvement of Oxidation Resistance and Adhesion Strength of Thermal Barrier Coating by Grinding and Grit-Blasting Treatments / J. Therm. Spray Tech. 2020. Vol. 29. P. 1728 - 1740. DOI: 10.1007/sll666-020-01057-y
20. Begley M., R., Mumm D. R., Evans A. G., Hutchinson J. W. Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates / Acta Mater. 2000. Vol. 48. N. 12. P. 3211 - 3220. DOI: 10.1016/S1359-6454(00)00108-7
21. Wang Y. M., Weng W. X., Chi M. H. Investigation into the evolution of interface fracture toughness of thermal barrier coatings with thermal exposure treatment by wedge indentation / J. Mater. Res. 2020. Vol. 35. Issue 13. P. 1715 - 1725. DOI: 10.1557/jmr.2020.79
22. Bull S. J., Berasetegui E., G. An overview of the potential of quantitative coating adhesion measurement by scratch testing / Tribol. Int. 2006. Vol. 39. P. 99 - 114. DOI: 10.1016/j.triboint.2005.04.013
23. Burnett P. J., Rickerby D. S. The Mechanical Properties of Wear Resistant Coatings I: Modelling of Hardness Behavior / Thin Solid Films. 1987. N 148. P. 41 - 50. DOI: 10.1016/0040-6090(87)90119-2
24. Attar E, Johannesson T. Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique / Surface Coatings Technol. 1996. Vol. 78. N 1 - 3. P. 87 - 102. DOI: 10.1016/0257-8972(94)02396-4
25. Fedorova E., Monceau E. D., Oquab D. Quantification of growth kinetics and adherence of oxide scales formed on Ni-based superalloys at high temperature / Corrosion Sci. 2010. Vol. 52. N 12. P. 3932-3942. DOI: 10.1016/j.corsci.2010.08.013
26. Devyatkina T. I., Belyaev E. S., Rogozhin V. V., Maksimov M. V. Study of the effect of electrolyte composition on adhesion and other properties of a coating-base system / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 10. P. 34 - 39 [in Russian], DOI: 10.26896/1028-6861-2021-87-10-34-39
27. Volinsky A. A., Moody N. R., Gerberich W. W. Interfacial toughness measurements for thin films on substrates / Acta Mater. 2002. Vol. 50. P. 441 - 466. DOI: 10.1016/S1359-6454(01)00354-8
28. Parry V, Chandra-Ambhorn S., Nilsonthi T., Brassini M. In chapter Mechanical behavior of thermal oxide scales on stainless steels / Solid State Phenomena. 2020. Vol. 300. P. 25 - 46.
29. Moskvichev V. V. Fundamentals of structural strength of technical systems and engineering structures: In 3 parts. Part 1: Problem statement and analysis of limit states. — Novosibirsk: Nauka, 2002. — 106 p. [in Russian],
30. Hutchinson J. W., Thouless M. D., Liniger E. G. Growth and configurational stability of circular, buckling-driven film delaminations / Acta Metall. Mater. 1992. N 2. P. 295 - 308. DOI: 10.1016/0956-7151(92)90304-W
31. Hutchinson R. G., Hutchinson J. W. Lifetime assessment for thermal barrier coatings: test for measuring mixed mode delamination toughness / J. Am. Ceram. Soc. 2011. Vol. 94. P. 85 -95. DOI: 10.1111/j.1551-2916.2011.04499.x
32. Pestrikov V. M., Morozov E. M. Fracture mechanics. Course of lectures. — St. Petersburg: EPC Professiya, 2012. — 552 p. [in Russian].
33. Liu Y., Vidal V., Roux S. Le, et al. Influence of isothermal and cyclic oxidation on the apparent interfacial toughness in thermal barrier coating systems / J. Eur. Ceram. Soc. 2015. Vol. 35. P. 4269 - 4275. DOI: 10.1016/j.jeurceramsoc.2015.07.018
34. Ito K., Shima T., Fujioka M., Arai M. Improvement of Oxidation Resistance and Adhesion Strength of Thermal Barrier Coating by Grinding and Grit-Blasting Treatments / J. Therm Spray Tech. 2020. Vol. 29. P. 1728 - 1740. DOI: 10.1007/sll666-020-01057-y
35. Schutze M. Protective Oxide Scales and Their Breakdown. — The Institute of Corrosion and Wiley Series on Corrosion and Protection, 2006. — 165 p.
36. Clarke D. R. The lateral growth strain accompanying the formation of a thermally grown oxide / Acta Mater. 2003. Vol. 51. P. 1393 - 1407. DOI: 10.1016/S1359-6454(02)00532-3
37. Grosseau-Poussard J.-L., Panicaud B., Ben Afia S. Modelling of stresses evolution in growing thermal oxides on metals. A methodology to identify the corresponding mechanical parameters / Comput. Mater. Sci. 2013. Vol. 71. P. 47 - 55. DOI: 10.1016/j.commatsci.2013.01.013
38. Zhang G., Wang H., Shen S. A chemomechanical coupling model for stress analysis of oxide scale growing between ceramic coating and substrate / Acta Meeh. 2017. Vol. 228. P. 3173 -3183. DOI: 10.1007/s00707-017-1887-3
39. Demizieux М.-C., Desgranges C., Martinelli L., et al. Morphology and Buckling of the Oxide Scale after Fe-9Cr Steel Oxidation in Water Vapor Environment / Oxidation Met. 2019. Vol. 91. P. 191 - 212. DOI: 10.1007/s11085-018-9873-2
40. FangX. F., Li Y., Yue M. K., Feng X. Chemo-mechanical coupling effect on high temperature oxidation: A review (Science China Technological Sciences). — Sci. China Tech. Sci., 2019. — 62 p. DOI: 10.1007/S11431-019-9527-0
41. Moskvichev V. V., Makhutov N. A., Shokin Yu. I., et al. Applied problems of structural strength and fracture mechanics of technical systems. — Novosibirsk: Nauka, 2021. — 796 p. [in Russian].
42. Burov A., Fedorova E. Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys / Eng. Failure Anal. 2021. Vol. 123. P. 105320. DOI: 10.1016/j.engfailanal.2021.105320
43. Sukhodoeva N. V. Investigation of the patterns of degradation of protective oxide layers and thermal barrier coatings on single-crystal nickel-based heat-resistant alloys under high-temperature exposure. Thesis. Specialty 05.16.09. — Tomsk, 2019. — 144 p. [in Russian].
44. Pascal C., Braccini M., Parry V., et al. Relations between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels / Mater. Char. 2017. Vol. 127. P. 161 -170. DOI:10.1016/j.matchar.2017.03.003
Рецензия
Для цитирования:
Федорова Е.Н., Суходоева Н.В., Москвичев В.В., Огорельцева Н.В., Климкин Ю.О. Методы определения характеристик адгезии в системах с теплозащитными покрытиями. Заводская лаборатория. Диагностика материалов. 2022;88(12):51-63. https://doi.org/10.26896/1028-6861-2022-88-12-51-63
For citation:
Fedorova E.N., Sukhodoeva N.V., Moskvichev V.V., Ogoreltceva N.V., Klimkin Yu.O. Methods for characterizing the interfacial adhesion in thermal barrier coating systems. Industrial laboratory. Diagnostics of materials. 2022;88(12):51-63. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-12-51-63