Preview

Industrial laboratory. Diagnostics of materials

Advanced search

The impact of accelerated electrons on volatile organic compounds in poultry and fish

https://doi.org/10.26896/1028-6861-2023-89-1-11-19

Abstract

The necessity of developing safe methods of processing food products which improve the quality and extend their shelf life entails further scientific research aimed at increasing the efficiency of radiation processing of food products. Ionizing radiation causes lipid peroxidation in the items with a high fat and water content, such as chilled meat and fish products, which leads to formation of organic volatile compounds that render the food the specific flavor and smell. Gas chromatography-mass spectrometry is a technique that provides identification of chemical changes that actually occur in the product after irradiation. Experimental data on the content of organic volatile compounds in chilled turkey and salmon meat samples exposed to irradiation with 1 MeV accelerated electrons in the dose range from 0.25 to 2 kGy revealed both common and different trends in the behavior of dose dependences of alcohol, aldehyde and ketone contents in various types of chilled products. A proposed mathematical model based on the possibility of simultaneous occurrence of two competing processes, i.e., the decomposition of compounds due to their oxidation and the accumulation of compounds due to oxidation of other compounds after exposure to ionizing radiation match a dose dependent character of experimental data.

About the Authors

U. A. Bliznyuk
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Ulyana A. Bliznyuk - Faculty of Physics, Lomonosov Moscow State University.

1-2, Leninskie gory, Moscow, 119991; 1-2, Leninskie gory, Moscow, 119991.



P. Yu. Borshchegovskaya
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Polina Yu. Borshchegovskaya - Faculty of Physics, Lomonosov Moscow State University.

1-2, Leninskie gory, Moscow, 119991; 1-2, Leninskie gory, Moscow, 119991.



T. A. Bolotnik
Lomonosov Moscow State University
Russian Federation

Timofey A. Bolotnik - Faculty of Chemistry.

1-3, Leninskie gory, Moscow, 119991.



V. S. Ipatova
Skobeltsyn Institute of Nuclear Physics
Russian Federation

Victoria S. Ipatova.

1-2, Leninskie gory, Moscow, 119991



A. D. Nikitchenko
Lomonosov Moscow State University
Russian Federation

Alexander D. Nikitchenko - Faculty of Physics.

1-2, Leninskie gory, Moscow, 119991.



O. Yu. Khmelevsky
Lomonosov Moscow State University
Russian Federation

Oleg Yu. Khmelevsky - Faculty of Physics.

1-2, Leninskie gory, Moscow, 119991



A. R. Chernyaev
Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Alexander R. Chernyaev - Faculty of Physics, Lomonosov Moscow State University.

1-2, Leninskie gory, Moscow, 119991; 1-2, Leninskie gory, Moscow, 119991



I. A. Rodin
Lomonosov Moscow State University; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Igor A. Rodin - Faculty of Chemistry, Lomonosov Moscow State University; Department of Epidemiology and Evidence-Based Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

1-3, Leninskie gory, Moscow, 119991; 2-2, B. Pirogovskaya ul., Moscow, 119435



References

1. IAEA-TECDOC — 2008. Development of Electron Beam and X-Ray Applications for Food Irradiation. — Vienna: International Atomic Energy Agency, 2022. — 372 p.

2. State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. FAO, 2019. http://www.fao.org/3/ca6030en/ca6030en.pdf (accessed October 20, 2022).

3. IAEA-TECDOC — 1786. Radiation Technology for Cleaner Products and Processes: Proceedings of the Technical Meeting on Deployment of Clean (Green) Radiation Technology for Environmental Remediation. — Vienna: International Atomic Energy Agency, 2016. — 246 p.

4. Leyva-Porras C., Roman Aguirre M., Cruz-Alcantar P., et al. Application of Antioxidants as an Alternative Improving of Shelf Life in Foods I Polysaccharides. 2021. Vol. 2. P 594607. DOI: 10.3390/polysaccharides2030036

5. Amit S. K., Uddin M. M., Rahman R., et al. A review on mechanisms and commercial aspects of food preservation and processing / Agric. Food Secur. 2017. Vol. 6. Article 51. DOI: 10.1186/s40066-017-0130-8

6. Formanek Z., Lynch A., Galvin K., et al. Combined effect of irradiation and the use of natural antioxidants on the shelf-life stability of overwrapped minced beef / Meat Sci. 2003. Vol. 63. P. 433 - 440. DOI: 10.1016/S0309-1740(02)00063-3

7. IAEA-TECDOC — 1337. Radiation Processing for Safe, Shelf-Stable and Ready-to-Eat food: Proceedings of a final Research Coordination Meeting held in Montreal, Canada, 10 - 14 July 2000. — Vienna: International Atomic Energy Agency, 2003. — 264 p.

8. Jayathilaka K., Sultana K., Pandey M. C. Radiation Processing: An Emerging Preservation Technique for Meat and Meat Products / Def. Life Sci. J. 2017. Vol. 2. N 2. P. 133 - 141. DOI: 10.14429/dlsj.2.11368

9. Schottroff F., Lasarus T., Stupak M., et al. Decontamination of herbs and spices by gamma irradiation and low-energy electron beam treatments and influence on product characteristics upon storage / J. Radiat. Res. Appl. Sci. 2021. Vol. 14. N 1. P. 380 - 395. DOI: 10.1080/16878507.2021.1981112

10. Zaman S., Alam M. K., Mortuza M. F., Bari M. L. Effectiveness of irradiation treatment in eliminating E. coli O157:H7 and Salmonella in dried organic herb samples intended for use in blended tea / J. Food Nutr. Sci. 2015. Vol. 3. N 1-2. P. 165 -170. DOI: 10.11648/j.jfns.s.2015030102.42

11. Arvanitoyannis I. S., Stratakos A. Ch., Tsarouhas P. Irradiation Applications in Vegetables and Fruits: A Review / Crit. Rev. Food Sci. Nutr. 2009. Vol. 49. N 5. P. 427 - 462. DOI: 10.1080/10408390802067936

12. Bliznyuk U., Chulikova N., Ipatova V, Malyuga A. Effect of ionizing radiation with 1 MeV on phenology of potatoes inhabited by fungi rhizoctonia solani kuhn / E3S Web of Conferences. 2021. Vol. 285. 02001. DOI: 10.1051/e3sconf/202128502001

13. Bliznyuk U. A., Studenikin F. R., Borshchegovskaya P. Yu., et al. Characteristics of dose distributions of electron beams used in the radiation processing of food products / Bull. Russ. Acad. Sci.: Phys. 2021. Vol. 85. N 10. P. 1097 - 1101. DOI: 10.3103/S1062873821100087

14. Qin H., Yang G., Kuang S., et al. Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing / Radiat. Phys. Chem. 2018. Vol. 143. P. 8 - 13. DOI: 10.1016/j.radphyschem.2017.09.012

15. Arapcheska M., Spasevska H., Ginovska M. Effect of irradiation on food safety and quality / Curr. Trends Natur. Sci. 2020. Vol. 9. N 18. P. 100 - 106. DOI: 10.47068/ctns.2020.v9il8.014

16. Li C., He L., Jin G. Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage / Meat Sci. 2017. Vol. 128. P. 68 - 76. DOI: 10.1016/j.meatsci.2017.02.009

17. Brewer M. S. Irradiation effects on meat flavor: A review / Meat Sci. 2009. Vol. 81. N 1. P. 1 - 14. DOI: 10.1016/j.meatsci.2008.07.011

18. D’Oca М. С., Bartolotta A., Cammilleri М. С., et al. The gas chromatography/mass spectrometry can be used for dose estimation in irradiated pork / Radiat. Phys. Chem. 2009. Vol. 78. N 7 - 8. P. 687 - 689. DOI: 10.1016/J.RADPHYSCHEM.2009.03.057

19. Bliznyuk U., Avdyukhina V., Borshchegovskaya P., et al. Effect of electron and X-ray irradiation on microbiological and chemical parameters of chilled turkey / Sci. Rep. 2022. Vol. 12. P. 750. DOI: 10.1038/s41598-021-04733-3

20. Bliznyuk U., Borshchegovskaya P., Bolotnik T., et al. Research into Gas Chromatography — Mass Spectrometry (GC-MS) for Ensuring the Effect of 1 MeV-Accelerated Electrons on Volatile Organic Compounds in Turkey Meat / Separations. 2022. Vol. 9. N 8. 227. DOI: 10.3390/separations9080227

21. Bliznyuk U. A., Avdyukhina V. M., Borshchegovskaya P. Yu., et al. Determination of chemical and microbiological characteristics of meat products treated by radiation / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 6. P. 5 - 13. [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-5-13

22. Chernyaev A. P., Avdyukhina V. M., Bliznyuk U. A., et al. Study of the effectiveness of treating trout with electron beam and X-ray radiation / Bui. Russ. Acad. Sci.: Phys. 2020. Vol. 84. N 4. P. 385-390. DOI: 10.3103/S106287382004005X

23. Chernyaev A. P., Bliznyuk U. A., Borshchegovskaya P. Y., et al. Using Low-Energy Electrons for the Radiation Treatment of Chilled Trout / Phys. Part. Nuclei Lett. 2020. Vol. 17. P. 611-614. DOI: 10.1134/S1547477120040160

24. Bliznyuk U. A., Borchegovskaya R. Yu., Chernyaev A. R, et al. Computer simulation to determine food irradiation dose levels / IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 365. P. 012002. DOI: 10.1088/1755-1315/365/1/012002

25. Jensen I.-J., Eilertsen K.-E., Otnaes С. H. A., et al. An Update on the Content of Fatty Acids, Dioxins, PCBs and Heavy Metals in Farmed, Escaped and Wild Atlantic Salmon (Salmo salar L.) in Norway / Foods. 2020. Vol. 9. N 12. 1901. DOI: 10.3390/foods9121901

26. Nechev J. T., Edvinsen G. K., Eilertsen K.-E. Fatty Acid Composition of the Lipids from Atlantic Salmon-Comparison of Two Extraction Methods without Halogenated Solvents / Foods. 2021. Vol. 10. N. 1. 73. DOI: 10.3390/foods10010073

27. Pyz-Lukasik R., Chalabis-Mazurek A., Gondek M. Basic and functional nutrients in the muscles of fish: a review / Int. J. Food Prop. 2020. Vol. 23. N 1. P. 1941 - 1950. DOI: 10.1080/10942912.2020.1828457

28. Boisteanu R, Ciobanu M., Lazar R. Researches Regarding the Fatty Acids Content in Turkey Meat / Bull. UASVM Anim. Sci. Biotechnol. 2014. Vol. 71. N 2. P. 134 - 137. DOI: 10.15835/buasvmcn-asb:10816

29. Oblakova M., Ribarski S., Oblakov N., Hristakieva P. Chemical composition and quality of turkey-broiler meat from crosses of layer light ILL) and meat heavy (MN) turkey / Trakia J. Sci. 2016. N 2. P. 142 - 147. DOI: 10.15547/tjs.2016.02.004

30. Stadnik J., Czech A., Ognik K. Effect of soybean or linseed oil with RRR-d-a-tocopherol or dl-a-tocopherol acetate on quality characteristics and fatty acid profile of turkey meat / Ann. Anim. Sci. 2018. Vol. 18. N4. P. 991 - 1005. DOI: 10.2478/aoas-2018-0035

31. Fan X., Thayer D. W. Formation of Malonaldehyde, Formaldehyde, and Acetaldehyde in Apple Juice Induced by Ionizing Radiation / J. Food Sci. 2002. Vol. 67. N 7. P. 2523 - 2528. DOI: 10.1111/j.1365-2621.2002.tb08770.x

32. Rymer C., Givens D. I. n - 3 Fatty Acid Enrichment of Edible Tissue of Poultry: A Review / Lipids. 2005. Vol. 40. N 2. P. 121 -130. DOI: 10.1007/S11745-005-1366-4


Review

For citations:


Bliznyuk U.A., Borshchegovskaya P.Yu., Bolotnik T.A., Ipatova V.S., Nikitchenko A.D., Khmelevsky O.Yu., Chernyaev A.R., Rodin I.A. The impact of accelerated electrons on volatile organic compounds in poultry and fish. Industrial laboratory. Diagnostics of materials. 2023;89(1):11-19. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-1-11-19

Views: 436


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)