Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Selective method for quantitative determination of glyphosate, aminomethylphosphonic acid, and glufosinate in animal products using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)

https://doi.org/10.26896/1028-6861-2023-89-2-I-13-22

Abstract

Glyphosate and glufosinate are broad-range, non-selective herbicides that contaminate plant products used in fattening farm animals which in turn bears the risks of contamination of the whole food chain. The goal of this study is to develop a selective procedure for the chromato-mass spectrometric determination of glyphosate, aminomethylphosphonic acid (glyphosate metabolite) and glufosinate in meat, offal and milk. The limit of quantitative determination of glyphosate and glufosinate in meat and offal is 0.05 mg/kg, aminomethylphosphonic acid is 0.4 mg/kg; the limit of quantitative determination of glyphosate and glufosinate in milk is 0.02 mg/kg, aminomethylphosphonic acid is 0.05 mg/kg. The compounds to be determined are extracted from the objects under study with a solution of sulfbsalicylic acid, the primary purification of the extracts is carried out using a reverse-phase C18 sorbent, the compounds to be determined are derivatized using 9-fluorenylmethoxycarbonyl chloride, and the final purification of the derivatives is carried out on a sorbent exhibiting weak cation exchange properties. The purified extract is concentrated, diluted with a mixture of methanol and acetic acid in water, centrifuged and then used for analysis. Chromatographic separation is performed on a column with a reversed-phase C18 sorbent. Tandem mass-spectrometry is used for detection of the compounds under study. The calibration dependences for the determined compounds are linear, the correlation coefficient (K) > 0.99. The validation of the procedure showed that the relative expanded uncertainty in the lower range of the determined contents ranged from 27 to 41% for glyphosate, from 25 to 29% for aminomethylphosphonic acid, and from 25 to 34% for glufbsinate, depending on the type of object of analysis. The obtained values of the limit of quantitative determination are consistent with the temporary maximum allowable levels set in SanPiN 1.2.3685-21.

About the Authors

A. V. Sorokin
The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI")
Russian Federation

Alexander V. Sorokin

5, Zvenigorodskoe shosse, 123022, Moscow



A. V. Tretyakov
The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI")
Russian Federation

Aleksey V. Tretyakov

5, Zvenigorodskoe shosse, 123022, Moscow



L. K. Kish
The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI")
Russian Federation

Leonid K. Kish

5, Zvenigorodskoe shosse, 123022, Moscow



References

1. Spiridonov Yu. Ya., Larina G. E., Shestakov V G. Methodological guide for the study of herbicides used in crop production. — Moscow: Pechatnyi Gorod, 2009. — 252 p. [in Russian].

2. Arregui М. С , Lenardyn A., Sanchez D., et al. Monitoring glyphosate residues in transgenic glyphosate-resistant soybean / Pest. Manag. Sci. 2003. Vol. 60. E 163 – 166. DOI: 10.1002/ps.775

3. Sorokin A., Nekrasov D., Batov I., et al. Glyphosate in raw materials of plant origin and feed / Kombikorma. 2022. N 3. E 58 - 60 [in Russian]. DOI: 10.25741/2413-287X-2022-03-4-171

4. Zharikov M. G., Spiridonov Yu. Ya. Studying the Effect of Glyphosphate Herbicides on an Agrocenosis / Agrokhimiya. 2008. N 8. E 1 - 9 [in Russian].

5. Mel'nikov N. N., Novozhilov К. V, Belan S. R. Pesticides and Plant Growth Regulators: A Handbook. — Moscow: Khimiya, 1995. — 576 p. [in Russian].

6. Guyton K. Z., Loomis D., Grosse Y., et al. Carcinogenicity of Tetrachlorvinphos, Parathion, Malathion, Diazinon, and Glyphosate / Lancet Oncol. 2015. Vol. 16. P 490 - 491. DOI: 10.1016/S1470-2045(15)70134-8

7. Qian K., Tang Т., Shi Т., et al. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride / Anal. Chim. Acta. 2009. Vol. 635. N 2. P 222 - 226. DOI: 10.1016/j.aca.2009.01.022

8. Delmonico E., Janksyn В., Nilson S., et al. Determination of glyphosate and aminomethylphosphonic acid for assessing the quality tap water using SPE and HPLC / Acta Sci. Technol. 2014. Vol. 36. P 513 - 519. DOI: 10.4025/actascitechnol.v36i3.22406

9. Sun L., Kong D., Gu W., et al. Determination of glyphosate in soil/sludge by high performance liquid chromatography / J. Chromatogr. A. 2017. Vol. 1502. P 8 - 13. DOI: 10.1016/j.chroma.2017.04.018

10. Pires N., Passos C., Morgado M., et al. Determination of glyphosate, AMPA and glufosinate by high performance liquid chromatography with fluorescence detection in waters of the Santarem Plateau, Brazilian Amazon / J. Environ. Sci. Health, B. 2020. Vol. 55. N 9. P 794 - 802. DOI: 10.1080/03601234.2020.1784668

11. Polyiem W., Hongsibsong S., Chantara S., et al. Determination and Assessment of Glyphosate Exposure Among Farmers from Northern Part of Thailand / J. Pharmacol. Toxicol. 2017. Vol. 12. N 2. P 97 - 102. DOI: 10.3923/jpt.2017.97.102

12. Karolyne M., Siomara J., Celia G., et al. Determination of Glyphosate in human urine from farmers in Mato Grosso-BR / InterAm. J. Med. Health. 2020. Vol. 3. P 1 - 10. DOI: 10.31005/iajmh.v3i0.124

13. Sharma O. P., Pholphana N., Rangkadilok N., et al. Development of simple and sensitive HPLC method for determination of glyphosate residues in soybean / Nepal J. Environ. Sci. 2015. Vol. 3. P 21 - 26. DOI: 10.3126/njes.v3i0.22731

14. Wang E X., Pan E, Zhang S., et al. Determination of Glyphosate Residue in Genetically Modified Soybean by Protein Precipitator Clean-up and HPLC with OPA Post-column Derivatization: International Conference on Environmental Research and Public Health / ICERP 2017. P 124 - 136. DOI: 10.1515/9783110559040-016

15. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044) / Official J. L 221. 2002. P 8 - 36.

16. Chamkasem N., Harmon T. Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry / Anal. Bioanal. Chem. 2016. Vol. 408. N 18. P 4995 - 5004. DOI: 10.1007/s00216-016-9597 – 6

17. Kaczynski P., Lozowicka B. Liquid chromatographic deter mination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection / Open Chem. 2015. Vol. 13. N 1. P 1011 -1019. DOI: 10.1515/chem-2015-0107

18. Goscinny S., Unterluggauer H., Aldrian J., et al. Determination of Glyphosate and Its Metabolite AMPA (Aminomethylphosphonic Acid) in Cereals After Derivatization by Isotope Dilution and UPLC-MS/MS / Food Anal. Methods. 2012. Vol. 5. N 5. P 1177 - 1185. DOI: 10.1007Ы2161-011-9361-7

19. Chen M. X., Cao Z. Y., Jiang Y., et al. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry / J. Chromatogr. A. 2013. Vol. 1272. P 90 - 99. DOI: 10.1016/j.chroma.2012.11.069

20. Chamkasem N., Vargo J. D. Development and independent laboratory validation of an analytical method for the direct determination of glyphosate, glufosinate, and aminomethylphosphonic acid in honey by liquid chromatography/tandem mass spectrometry / J. Reg. Sci. 2017. Vol. 5. N 2. P 1 - 9. DOI: 10.21423/jrs-v05n02p001

21. Jensen P. K., Wujcik С E., McGuir M. K., et al. Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS / J. Environ. Sci. Health B. 2016. Vol. 51. N 4. P 254 - 259. DOI: 10.1080/03601234.2015.1120619

22. Steinborn A., Alder L., Michalski В., et al. Determination of glyphosate levels in breast milk samples from Germany by LC-MS/MS and GC-MS/MS / J. Agric. Food Chem. 2016. Vol. 64. N 6. P 1414 - 1421. DOI: 10.1021/acsjafc.5b05852

23. Li В., Deng X., Guo D., et al. Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Foods Using High Performance Liquid Chromatography-Mass Spectrometry / Mass Spectrometry / Chin. J. Chromatogr. 2007. Vol. 25. P 486 - 490. DOI: 10.1016/S1872-2059(07)60017-0

24. Szternfeld P., Malysheva S. V., Hanot V., et al. Robust Transferable Method for the Determination of Glyphosate Residue in Liver After Derivatization by Ultra-high Pressure Liquid Chromatography-Tandem Mass Spectrometry / Food Anal. Methods. 2016. Vol. 9. P 1173 - 1179. DOI: 10.1007Ы2161-015-0293-5


Review

For citations:


Sorokin A.V., Tretyakov A.V., Kish L.K. Selective method for quantitative determination of glyphosate, aminomethylphosphonic acid, and glufosinate in animal products using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Industrial laboratory. Diagnostics of materials. 2023;89(2(I)):13-22. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-2-I-13-22

Views: 696


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)