Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A sensory granular material based on impregnated composite «cross-linked polyvinyl alcohol – magnetite» for the determination of carbohydrates by optical micrometry

https://doi.org/10.26896/1028-6861-2024-90-6-5-14

Abstract

Synthesis and application of a composite material «cross-linked polyvinyl alcohol (PVA) – magnetite» as a sensitive element for the determination of carbohydrates by optical micrometry has been studied. The chemical structure was confirmed by IR-spectroscopy. The content of Fe3O4 in PVA granules was calculated using magnetization curves. It is shown that the introduction of Fe3O4 particles into PVA granules at pH value of buffer solution 6.8 significantly narrows the range of carbohydrate concentrations to be determined and reduces the sensitivity of PVA to them. However, at pH 8.6 the presence of Fe3O4 particles in granules does not affect the metrological characteristics of the glucose and fructose determination (their detection limit equals 7.9 mmol/dm3) but reduces the relative standard deviation of their determination to 3 wt.%. Sensory granules with optimal magnetite content (1.54%) were tested in the determination of total content of glucose and fructose in natural syrups with a high level of fructose by optical micrometry. The results obtained match the accepted reference values specified by the syrup manufacturers.

About the Authors

I. S. Shchemelev
Lomonosov Moscow State University
Russian Federation

Ivan S. Shchemelev,

Moscow.



N. A. Zinov’ev
Lomonosov Moscow State University
Russian Federation

Nikolay A. Zinov’ev,

Moscow.



A. V. Ivanov
Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the RAS
Russian Federation

Alexander V. Ivanov,

Moscow.



N. B. Ferapontov
Lomonosov Moscow State University
Russian Federation

Nikolay B. Ferapontov,

Moscow.



I. V. Mikheev
Lomonosov Moscow State University
Russian Federation

Ivan V. Mikheev, 

Moscow.



A. N. Gagarin
Vernadskii Institute of Geochemistry and Analytical Chemistry of the RAS
Russian Federation

Alexander N. Gagarin, 

Moscow.



References

1. Shou W., Yang Sh.-T., Wang Y.-L., Guo L.-H. Preparation of noble metal nanoparticles and hydrogel composite materials and their application in analytical chemistry / Chinese J. Anal. Chem. 2021. Vol. 49. N 5. P. 676 – 685. DOI: 10.1016/S1872-2040(21)60097-X

2. Liu Ch., Quan K., Chen J., et al. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: a review / J. Chromatogr. A. 2023. Vol. 1700. 464032. DOI: 10.1016/j.chroma.2023.464032

3. Si T., Wang Sh., Zhang H., et al. An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation / Anal. Chim. Acta. 2021. Vol. 1183. 338942. DOI: 10.1016/j.aca.2021.338942

4. Prosuntsova D. S., Plodukhin A. Yu., Ananieva I. A., et al. New composite stationary phase for chiral high-performance liquid chromatography / J. Porous Mater. 2021. Vol. 28. N 2. P. 407 – 414. DOI: 10.1007/s10934-020-00985-y

5. Prosuntsova D. S., Ananieva I. A., Nesterenko P. N., Shpigun O. A. Microspherical polystyrene-divinylbenzene particles hybridized with eremomycin stabilized gold nanoparticles as a stationary phase for chiral liquid chromatography / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 12. P. 14 – 20 [in Russian]. DOI: 10.26896/1028-6861-2022-88-12-14-20

6. Amini Sh., Kandeh S. H., Ebrahimzadeh H., Khodayari P. Electrospun composite nanofibers modified with silver nanoparticles for extraction of trace heavy metals from water and rice samples: an highly efficient and reproducible sorbent / Food Chem. 2023. Vol. 420. 136122. DOI: 10.1016/j.foodchem.2023.136122

7. Ahmed E. M., Isawi H., Morsy M., et al. Effective nanomembranes from chitosan/PVA blend decorated graphene oxide with gum rosin and silver nanoparticles for removal of heavy metals and microbes from water resources / Surf. Interfaces. 2023. Vol. 39. 102980. DOI: 10.1016/j.surfin.2023.102980

8. Jinadasa K. K., Peña-Vázquez E., Bermejo-Barrera P., et al. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review / Microchem. J. 2020. Vol. 156. 104886. DOI: 10.1016/j.microc.2020.104886

9. Hejabri Kandeh S., Amini Sh., Ebrahimzadeh H. PVA/Stevia/MIL-88A@AuNPs composite nanofibers as a novel sorbent for simultaneous extraction of eight agricultural pesticides in food and vegetable samples followed by HPLC-UV analysis / Food Chem. 2022. Vol. 386. 132734. DOI: 10.1016/j.foodchem.2022.132734

10. Alizadeh R., Mashalavi B., Faal A. Ye., Seidi Sh. Development of ultrasound assisted dispersive micro solid phase extraction based on CuO nanoplate-polyaniline composite as a new sorbent for insecticides analysis in wheat samples / Microchem. J. 2021. Vol. 168. 106422. DOI: 10.1016/j.microc.2021.106422

11. Vosough S., Amini Sh., Ebrahimzadeh H., Kandeh S. H. Application of electrospun composite nanofibers as an efficient sorbent for extraction of pesticides from food samples / J. Chromatogr. A. 2023. Vol. 1687. 463699. DOI: 10.1016/j.chroma.2022.463699

12. Jullakan S., Bunkoed O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk / J. Chromatogr. B. 2021. Vol. 1180. 122900. DOI: 10.1016/j.jchromb.2021.122900

13. You R., Wang H., Wang Ch., et al. Bacterial cellulose loaded with silver nanoparticles as a flexible, stable and sensitive SERS-active substrate for detection of the shellfish toxin DTX-1 / Food Chem. 2023. Vol. 427. 136692. DOI: 10.1016/j.foodchem.2023.136692

14. Devasurendra A. M., Palagama D. S. W., Rohanifar A., et al. Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material / J. Chromatogr. A. 2018. Vol. 1560. P. 1 – 9. DOI: 10.1016/j.chroma.2018.04.027

15. Devi R., Thakur M., Pundir C. S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles — polypirrole composite film / Biosens. Bioelectron. 2011. Vol. 26. N 8. P. 3420 – 3426. DOI: 10.1016/j.bios.2011.01.014

16. Wang Ya., Tang G., Zhao Ch., et al. Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception / Sens. Actuators, B. 2021. Vol. 345. 130421. DOI: 10.1016/j.snb.2021.130421

17. Gu Yi., Wang Ya., Wu X., et al. Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly(o-aminothiophenol) with gold nanoparticles for the determination of aflatoxin B1 / Sens. Actuators, B. 2019. Vol. 291. P. 293 – 297. DOI: 10.1016/j.snb.2019.04.092

18. Zhizhin K. Yu., Turyshev E. S., Kopytin A. V., et al. Polymer nanocarbon materials as ion-to-electron transducers in solid-contact ion selective electrodes / Nanosystems: Phys. Chem. Math. 2022. Vol. 13. N 6. P. 688 – 697. DOI: 10.17586/2220-8054-2022-13-6-688-697

19. Shpigun L. K., Isaeva N. A., Suranova M. A. Determination of catecolamines on electrode modified with multiwalled carbon nanotubes / Rus. J. Electrochem. 2014. Vol. 50. N 10. P. 926 – 932. DOI: 10.1134/S1023193514100103

20. Lu M., Zhu H., Bazuin C. G., et al. Polymer-templated gold nanoparticles on oprical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors / ACS Sens. 2019. Vol. 4. N 3. P. 613 – 622. DOI: 10.1021/acssensors.8b01372

21. Mamtmin G., Nizamidin P., Abula R., Yimit A. Composite optical waveguide sensor based on porphyrin@ZnO film for sulfide-gas detection / Chinese J. Anal. Chem. 2023. Vol. 51. N 7. 100260. DOI: 10.1016/j.cjac.2023.100260

22. Yetisen A. K., Butt H., Yun S.-H. Photonic crystal flakes / ACS Sensors. 2016. Vol. 1. N 5. P. 493 – 497. DOI: 10.1021/acssensors.6b00108

23. Kraiskii A. V., Sultanov T. T., Postnikov V. A., Khamidulin A. V. Holographic sensors for diagnostics of solution components / Quant. Electron. 2010. Vol. 40. N 2. P. 178 – 182. DOI: 10.1070/QE2010v040n02ABEH014169

24. Martinez-Hurtado J. L., Davidson C. A. B., Blyth J., Lowe C. R. Holographic detection of hydrocarbon gases and other volatile compounds / Langmuir. 2010. Vol. 26. N 19. P. 15694 – 15699. DOI: 10.1021/la102693m

25. Tolmacheva V. V., Apyari V. V., Kochuk E. V., Dmitrienko S. G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds / J. Anal. Chem. 2016. Vol. 71. N 4. P. 321 – 338. DOI: 10.1134/S1061934816040079

26. Dmitrienko S. G., Apyari V. V., Tolmacheva V. V., et al. Dispersive and magnetic solid-phase extraction of organic compounds: Review of reviews / J. Anal. Chem. 2024. Vol. 79. N 2. P. 105 – 118. DOI: 10.1134/S1061934824020060

27. Sánchez-González J., Tabernero M. J., Bermejo A. M., et al. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography — tandem mass spectrometry / Talanta. 2016. Vol. 147. P. 641 – 649. DOI: 10.1016/j.talanta.2015.10.034

28. Sorribes-Soriano A., Esteve-Turrillas A., Armenta S., et al. Magnetic molecularly imprinted polymers for the selective determination of cocaine by ion mobility spectrometry / J. Chromatogr. A. 2015. Vol. 1545. P. 22 – 31. DOI: 10.1016/j.chroma.2018.02.055

29. Asgharinezhad A. A., Ebrahimzadeh H. Poly(2-aminobenzothiazole)-coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample / J. Chromatogr. A. 2016. Vol. 1435. P. 18 – 29. DOI: 10.1016/j.chroma.2016.01.027

30. Bagheri H., Afkhami A., Saber-Tehrani M., Khoshsafar H. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry / Talanta. 2012. Vol. 97. P. 87 – 95. DOI: 10.1016/j.talanta.2012.03.066

31. Li Q., Zhuo Yi., You S., et al. Rapid preparation of melamine based magnetic covalent triazine polymers for highly efficient extraction of copper (II), chromium (III) and lead (II) ions from environmental and biological samples / Microchem. J. 2022. Vol. 181. 107698. DOI: 10.1016/j.microc.2022.107698

32. Barzkar M., Ghiasvand A., Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media / Talanta. 2023. Vol. 259. 124501. DOI: 10.1016/j.talanta.2023.124501

33. Melekhin A. O., Tolmacheva V. V., Goncharov N. O., et al. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization — magnetic solid-phase extraction / J. Pharm. Biomed. Anal. 2024. Vol. 237. 115764. DOI: 10.1016/j.jpba.2023.115764

34. Melekhin A. O., Tolmacheva V. V., Shubina E. G., et al. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC-MS/MS / Talanta. 2021. Vol. 230. 122310. DOI: 10.1016/j.talanta.2021.122310

35. Ferapontov N. B., Kovaleva S. S., Rubin F. F. Determination of the nature and concentration of solutes using the swelling granule method / J. Anal. Chem. 2007. Vol. 62. N 10. P. 924 – 929. DOI: 10.1134/S1061934807100048

36. Kudukhova I. G., Rudakov O. B., Rudakova L. V., Ferapontov N. B. A new route for the control of water content in water-alcohol mixtures based on microphotographic measurement of swelling effect of polymer granules / Sorbts. Khromat. Processy. 2010. Vol. 10. N 5. P. 759 – 761 [in Russian].

37. Babayan I. I., Ivanov A. V., Ferapontov N. B., Tokmachev M. G. Using crosslinked polyvinyl alcohol granules for the determination of the composition of mixed electrolyte solutions / J. Anal. Chem. 2019. Vol. 74. N 8. P. 834 – 838. DOI: 10.1134/S1061934819080033

38. Karimov Kh. R., Staroverova A. V., Tokmachev M. G., et al. Application of composite polyvinyl alcohol – magnetite for increase of the accuracy of optical micrometry method / Sorbts. Khromat. Processy. 2023. Vol. 23. N 2. P. 216 – 224 [in Russian]. DOI: 10.17308/sorpchrom.2023.23/11145

39. Ivanov A. V., Smirnova M. A., Tikhanova O. A., et al. Granulated metamaterial cross-linked polyvinyl alcohol magnetite for use in optical micrometry / Theor. Found. Chem. Eng. 2021. Vol. 55. N 5. P. 1009 – 1014. DOI: 10.1134/S0040579521050067

40. Shchemelev I. S., Smirnova M. A., Ivanov A. V., Ferapontov N. B. Application of a complex forming impregnated polyvinyl alcohol for the determination of carbohydrates by optical micrometry / Rus. J. Coord. Chem. 2022. Vol. 48. N 10. P. 641 – 646. DOI: 10.1134/S1070328422100050

41. Shchemelev I. S., Khasanov D. S., Smirnova M. A., et al. Determination of reducing carbohydrates in natural honey samples by optical micrometry method / Chim. Techno Acta. 2022. Vol. 9. N 4. 20229417. DOI: 10.15826/chimtech.2022.9.4.17

42. Yamskov I. A., Budanov M. V., Davankov V. A. Polyvinyl alcohol hydrophilic carriers for enzyme immobilization / Russ. J. Bioorg. Chem. 1979. Vol. 5. N 11. P. 1728 – 1734 [in Russian].

43. Gruzdeva A. N., Gorshkov V. I., Gagarin A. N., Ferapontov N. B. Separation of electrolytes by sorption on crosslinked poly(vinyl alcohol) / Russ. J. Phys. Chem. A. 2005. Vol. 79. N 7. P. 1150 – 1152.

44. Bellamy L. J. The infra-red spectra of complex molecules. — London: Chapman and Hall; New York: Willey, 1975. — 433 p.

45. Allayarov S. R., Korchagin D. V., Allayarova U. Y., et al. Influence of gamma irradiation on the IR spectra and acute toxicity of polyvinyl alcohol / High Energy Chem. 2021. Vol. 55. N 1. P. 40 – 46. DOI: 10.1134/S0018143921010021

46. Ivanov A. V., Ferapontov N. B., Gagarin A. N., et al. Metamaterials based on polyvinyl alcohol with metal or metal oxide particles: synthesis and study by nondestructive physical methods / Theor. Found. Chem. Eng. 2020. Vol. 54. N 5. P. 1068 – 1073. DOI: 10.1134/S0040579520050115

47. Kostishin V. G., Nuriev A. V., Ostafiychuk B. K., Moklyak V. V. Mössbauer studies of magnetic polymer nanocomposites based on magnetite and polyvinyl alcohol / Izv. Vuzov. Mater. Élektron. Tekhn. 2013. N 4. P. 24 – 29 [in Russian].

48. Verchere J. F., Hlaibi M. Stability constants of borate complexes of oligosaccharides / Polyhedron. 1987. Vol. 6. N 6. P. 1415 – 1420. DOI: 10.1016/S0277-5387(00)80903-1

49. Shchemelev I. S., Zinov’ev T. V., Ivanov A. V., Ferapontov N. B. Digital colorometric analysis of aqueous and water-organic systems using hydrophilic composite films «crosslinked polyvinyl alcohol – magnetite» / J. Anal. Chem. 2024. Vol. 79 [in press].


Review

For citations:


Shchemelev I.S., Zinov’ev N.A., Ivanov A.V., Ferapontov N.B., Mikheev I.V., Gagarin A.N. A sensory granular material based on impregnated composite «cross-linked polyvinyl alcohol – magnetite» for the determination of carbohydrates by optical micrometry. Industrial laboratory. Diagnostics of materials. 2024;90(6):5-14. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-5-14

Views: 262


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)