

Сенсорный гранулированный материал на основе импрегнированного композита «сшитый поливиниловый спирт – магнетит» для определения углеводов методом оптической микрометрии
https://doi.org/10.26896/1028-6861-2024-90-6-5-14
Аннотация
Рассмотрены получение композитного материала «сшитый поливиниловый спирт – магнетит», импрегнированного раствором тетрабората натрия, и его применение в качестве чувствительного элемента для определения углеводов в водных растворах методом оптической микрометрии. Методом ИК-спектроскопии подтверждена химическая структура исследуемого полимера. С помощью кривых намагничивания рассчитано содержание частиц Fe3O4 в гранулах поливинилового спирта (ПВС). Показано, что при pH среды 6,8 внедрение магнетита в гранулы сужает диапазон определяемых содержаний углеводов и снижает чувствительность матрицы ПВС к ним; однако при pH 8,6 наличие частиц Fe3O4 в гранулах не увеличивает предел обнаружения глюкозы и фруктозы (7,9 ммоль/дм3), но позволяет снизить относительные стандартные отклонения их определения до 3 % масс. Сенсорные гранулы с оптимальным содержанием магнетита (1,54 %) апробированы при определении методом оптической микрометрии суммарного содержания углеводов в образцах натуральных сиропов с высоким содержанием фруктозы. Полученные результаты хорошо согласуются с данными, указанными производителями сиропов.
Ключевые слова
Об авторах
И. С. ЩемелевРоссия
Иван Сергеевич Щемелев,
119991, Москва, Ленинские горы, д. 1, стр. 3.
Н. А. Зиновьев
Россия
Николай Андреевич Зиновьев,
119991, Москва, Ленинские горы, д. 1, стр. 3.
А. В. Иванов
Россия
Александр Вадимович Иванов,
119991, Москва, Ленинские горы, д. 1, стр. 3;
119991, Москва, Ленинский проспект, д. 31.
Н. Б. Ферапонтов
Россия
Николай Борисович Ферапонтов,
119991, Москва, Ленинские горы, д. 1, стр. 3.
И. В. Михеев
Россия
Иван Владимирович Михеев,
119991, Москва, Ленинские горы, д. 1, стр. 3.
А. Н. Гагарин
Россия
Александр Николаевич Гагарин,
119334, Москва, ул. Косыгина, д. 19, стр. 1.
Список литературы
1. Shou W., Yang Sh.-T., Wang Y.-L., Guo L.-H. Preparation of noble metal nanoparticles and hydrogel composite materials and their application in analytical chemistry / Chinese J. Anal. Chem. 2021. Vol. 49. N 5. P. 676 – 685. DOI: 10.1016/S1872-2040(21)60097-X
2. Liu Ch., Quan K., Chen J., et al. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: a review / J. Chromatogr. A. 2023. Vol. 1700. 464032. DOI: 10.1016/j.chroma.2023.464032
3. Si T., Wang Sh., Zhang H., et al. An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation / Anal. Chim. Acta. 2021. Vol. 1183. 338942. DOI: 10.1016/j.aca.2021.338942
4. Prosuntsova D. S., Plodukhin A. Yu., Ananieva I. A., et al. New composite stationary phase for chiral high-performance liquid chromatography / J. Porous Mater. 2021. Vol. 28. N 2. P. 407 – 414. DOI: 10.1007/s10934-020-00985-y
5. Prosuntsova D. S., Ananieva I. A., Nesterenko P. N., Shpigun O. A. Microspherical polystyrene-divinylbenzene particles hybridized with eremomycin stabilized gold nanoparticles as a stationary phase for chiral liquid chromatography / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 12. P. 14 – 20 [in Russian]. DOI: 10.26896/1028-6861-2022-88-12-14-20
6. Amini Sh., Kandeh S. H., Ebrahimzadeh H., Khodayari P. Electrospun composite nanofibers modified with silver nanoparticles for extraction of trace heavy metals from water and rice samples: an highly efficient and reproducible sorbent / Food Chem. 2023. Vol. 420. 136122. DOI: 10.1016/j.foodchem.2023.136122
7. Ahmed E. M., Isawi H., Morsy M., et al. Effective nanomembranes from chitosan/PVA blend decorated graphene oxide with gum rosin and silver nanoparticles for removal of heavy metals and microbes from water resources / Surf. Interfaces. 2023. Vol. 39. 102980. DOI: 10.1016/j.surfin.2023.102980
8. Jinadasa K. K., Peña-Vázquez E., Bermejo-Barrera P., et al. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review / Microchem. J. 2020. Vol. 156. 104886. DOI: 10.1016/j.microc.2020.104886
9. Hejabri Kandeh S., Amini Sh., Ebrahimzadeh H. PVA/Stevia/MIL-88A@AuNPs composite nanofibers as a novel sorbent for simultaneous extraction of eight agricultural pesticides in food and vegetable samples followed by HPLC-UV analysis / Food Chem. 2022. Vol. 386. 132734. DOI: 10.1016/j.foodchem.2022.132734
10. Alizadeh R., Mashalavi B., Faal A. Ye., Seidi Sh. Development of ultrasound assisted dispersive micro solid phase extraction based on CuO nanoplate-polyaniline composite as a new sorbent for insecticides analysis in wheat samples / Microchem. J. 2021. Vol. 168. 106422. DOI: 10.1016/j.microc.2021.106422
11. Vosough S., Amini Sh., Ebrahimzadeh H., Kandeh S. H. Application of electrospun composite nanofibers as an efficient sorbent for extraction of pesticides from food samples / J. Chromatogr. A. 2023. Vol. 1687. 463699. DOI: 10.1016/j.chroma.2022.463699
12. Jullakan S., Bunkoed O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk / J. Chromatogr. B. 2021. Vol. 1180. 122900. DOI: 10.1016/j.jchromb.2021.122900
13. You R., Wang H., Wang Ch., et al. Bacterial cellulose loaded with silver nanoparticles as a flexible, stable and sensitive SERS-active substrate for detection of the shellfish toxin DTX-1 / Food Chem. 2023. Vol. 427. 136692. DOI: 10.1016/j.foodchem.2023.136692
14. Devasurendra A. M., Palagama D. S. W., Rohanifar A., et al. Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material / J. Chromatogr. A. 2018. Vol. 1560. P. 1 – 9. DOI: 10.1016/j.chroma.2018.04.027
15. Devi R., Thakur M., Pundir C. S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles — polypirrole composite film / Biosens. Bioelectron. 2011. Vol. 26. N 8. P. 3420 – 3426. DOI: 10.1016/j.bios.2011.01.014
16. Wang Ya., Tang G., Zhao Ch., et al. Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception / Sens. Actuators, B. 2021. Vol. 345. 130421. DOI: 10.1016/j.snb.2021.130421
17. Gu Yi., Wang Ya., Wu X., et al. Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly(o-aminothiophenol) with gold nanoparticles for the determination of aflatoxin B1 / Sens. Actuators, B. 2019. Vol. 291. P. 293 – 297. DOI: 10.1016/j.snb.2019.04.092
18. Zhizhin K. Yu., Turyshev E. S., Kopytin A. V., et al. Polymer nanocarbon materials as ion-to-electron transducers in solid-contact ion selective electrodes / Nanosystems: Phys. Chem. Math. 2022. Vol. 13. N 6. P. 688 – 697. DOI: 10.17586/2220-8054-2022-13-6-688-697
19. Shpigun L. K., Isaeva N. A., Suranova M. A. Determination of catecolamines on electrode modified with multiwalled carbon nanotubes / Rus. J. Electrochem. 2014. Vol. 50. N 10. P. 926 – 932. DOI: 10.1134/S1023193514100103
20. Lu M., Zhu H., Bazuin C. G., et al. Polymer-templated gold nanoparticles on oprical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors / ACS Sens. 2019. Vol. 4. N 3. P. 613 – 622. DOI: 10.1021/acssensors.8b01372
21. Mamtmin G., Nizamidin P., Abula R., Yimit A. Composite optical waveguide sensor based on porphyrin@ZnO film for sulfide-gas detection / Chinese J. Anal. Chem. 2023. Vol. 51. N 7. 100260. DOI: 10.1016/j.cjac.2023.100260
22. Yetisen A. K., Butt H., Yun S.-H. Photonic crystal flakes / ACS Sensors. 2016. Vol. 1. N 5. P. 493 – 497. DOI: 10.1021/acssensors.6b00108
23. Kraiskii A. V., Sultanov T. T., Postnikov V. A., Khamidulin A. V. Holographic sensors for diagnostics of solution components / Quant. Electron. 2010. Vol. 40. N 2. P. 178 – 182. DOI: 10.1070/QE2010v040n02ABEH014169
24. Martinez-Hurtado J. L., Davidson C. A. B., Blyth J., Lowe C. R. Holographic detection of hydrocarbon gases and other volatile compounds / Langmuir. 2010. Vol. 26. N 19. P. 15694 – 15699. DOI: 10.1021/la102693m
25. Tolmacheva V. V., Apyari V. V., Kochuk E. V., Dmitrienko S. G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds / J. Anal. Chem. 2016. Vol. 71. N 4. P. 321 – 338. DOI: 10.1134/S1061934816040079
26. Dmitrienko S. G., Apyari V. V., Tolmacheva V. V., et al. Dispersive and magnetic solid-phase extraction of organic compounds: Review of reviews / J. Anal. Chem. 2024. Vol. 79. N 2. P. 105 – 118. DOI: 10.1134/S1061934824020060
27. Sánchez-González J., Tabernero M. J., Bermejo A. M., et al. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography — tandem mass spectrometry / Talanta. 2016. Vol. 147. P. 641 – 649. DOI: 10.1016/j.talanta.2015.10.034
28. Sorribes-Soriano A., Esteve-Turrillas A., Armenta S., et al. Magnetic molecularly imprinted polymers for the selective determination of cocaine by ion mobility spectrometry / J. Chromatogr. A. 2015. Vol. 1545. P. 22 – 31. DOI: 10.1016/j.chroma.2018.02.055
29. Asgharinezhad A. A., Ebrahimzadeh H. Poly(2-aminobenzothiazole)-coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample / J. Chromatogr. A. 2016. Vol. 1435. P. 18 – 29. DOI: 10.1016/j.chroma.2016.01.027
30. Bagheri H., Afkhami A., Saber-Tehrani M., Khoshsafar H. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry / Talanta. 2012. Vol. 97. P. 87 – 95. DOI: 10.1016/j.talanta.2012.03.066
31. Li Q., Zhuo Yi., You S., et al. Rapid preparation of melamine based magnetic covalent triazine polymers for highly efficient extraction of copper (II), chromium (III) and lead (II) ions from environmental and biological samples / Microchem. J. 2022. Vol. 181. 107698. DOI: 10.1016/j.microc.2022.107698
32. Barzkar M., Ghiasvand A., Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media / Talanta. 2023. Vol. 259. 124501. DOI: 10.1016/j.talanta.2023.124501
33. Melekhin A. O., Tolmacheva V. V., Goncharov N. O., et al. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization — magnetic solid-phase extraction / J. Pharm. Biomed. Anal. 2024. Vol. 237. 115764. DOI: 10.1016/j.jpba.2023.115764
34. Melekhin A. O., Tolmacheva V. V., Shubina E. G., et al. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC-MS/MS / Talanta. 2021. Vol. 230. 122310. DOI: 10.1016/j.talanta.2021.122310
35. Ferapontov N. B., Kovaleva S. S., Rubin F. F. Determination of the nature and concentration of solutes using the swelling granule method / J. Anal. Chem. 2007. Vol. 62. N 10. P. 924 – 929. DOI: 10.1134/S1061934807100048
36. Kudukhova I. G., Rudakov O. B., Rudakova L. V., Ferapontov N. B. A new route for the control of water content in water-alcohol mixtures based on microphotographic measurement of swelling effect of polymer granules / Sorbts. Khromat. Processy. 2010. Vol. 10. N 5. P. 759 – 761 [in Russian].
37. Babayan I. I., Ivanov A. V., Ferapontov N. B., Tokmachev M. G. Using crosslinked polyvinyl alcohol granules for the determination of the composition of mixed electrolyte solutions / J. Anal. Chem. 2019. Vol. 74. N 8. P. 834 – 838. DOI: 10.1134/S1061934819080033
38. Karimov Kh. R., Staroverova A. V., Tokmachev M. G., et al. Application of composite polyvinyl alcohol – magnetite for increase of the accuracy of optical micrometry method / Sorbts. Khromat. Processy. 2023. Vol. 23. N 2. P. 216 – 224 [in Russian]. DOI: 10.17308/sorpchrom.2023.23/11145
39. Ivanov A. V., Smirnova M. A., Tikhanova O. A., et al. Granulated metamaterial cross-linked polyvinyl alcohol magnetite for use in optical micrometry / Theor. Found. Chem. Eng. 2021. Vol. 55. N 5. P. 1009 – 1014. DOI: 10.1134/S0040579521050067
40. Shchemelev I. S., Smirnova M. A., Ivanov A. V., Ferapontov N. B. Application of a complex forming impregnated polyvinyl alcohol for the determination of carbohydrates by optical micrometry / Rus. J. Coord. Chem. 2022. Vol. 48. N 10. P. 641 – 646. DOI: 10.1134/S1070328422100050
41. Shchemelev I. S., Khasanov D. S., Smirnova M. A., et al. Determination of reducing carbohydrates in natural honey samples by optical micrometry method / Chim. Techno Acta. 2022. Vol. 9. N 4. 20229417. DOI: 10.15826/chimtech.2022.9.4.17
42. Yamskov I. A., Budanov M. V., Davankov V. A. Polyvinyl alcohol hydrophilic carriers for enzyme immobilization / Russ. J. Bioorg. Chem. 1979. Vol. 5. N 11. P. 1728 – 1734 [in Russian].
43. Gruzdeva A. N., Gorshkov V. I., Gagarin A. N., Ferapontov N. B. Separation of electrolytes by sorption on crosslinked poly(vinyl alcohol) / Russ. J. Phys. Chem. A. 2005. Vol. 79. N 7. P. 1150 – 1152.
44. Bellamy L. J. The infra-red spectra of complex molecules. — London: Chapman and Hall; New York: Willey, 1975. — 433 p.
45. Allayarov S. R., Korchagin D. V., Allayarova U. Y., et al. Influence of gamma irradiation on the IR spectra and acute toxicity of polyvinyl alcohol / High Energy Chem. 2021. Vol. 55. N 1. P. 40 – 46. DOI: 10.1134/S0018143921010021
46. Ivanov A. V., Ferapontov N. B., Gagarin A. N., et al. Metamaterials based on polyvinyl alcohol with metal or metal oxide particles: synthesis and study by nondestructive physical methods / Theor. Found. Chem. Eng. 2020. Vol. 54. N 5. P. 1068 – 1073. DOI: 10.1134/S0040579520050115
47. Kostishin V. G., Nuriev A. V., Ostafiychuk B. K., Moklyak V. V. Mössbauer studies of magnetic polymer nanocomposites based on magnetite and polyvinyl alcohol / Izv. Vuzov. Mater. Élektron. Tekhn. 2013. N 4. P. 24 – 29 [in Russian].
48. Verchere J. F., Hlaibi M. Stability constants of borate complexes of oligosaccharides / Polyhedron. 1987. Vol. 6. N 6. P. 1415 – 1420. DOI: 10.1016/S0277-5387(00)80903-1
49. Shchemelev I. S., Zinov’ev T. V., Ivanov A. V., Ferapontov N. B. Digital colorometric analysis of aqueous and water-organic systems using hydrophilic composite films «crosslinked polyvinyl alcohol – magnetite» / J. Anal. Chem. 2024. Vol. 79 [in press].
Рецензия
Для цитирования:
Щемелев И.С., Зиновьев Н.А., Иванов А.В., Ферапонтов Н.Б., Михеев И.В., Гагарин А.Н. Сенсорный гранулированный материал на основе импрегнированного композита «сшитый поливиниловый спирт – магнетит» для определения углеводов методом оптической микрометрии. Заводская лаборатория. Диагностика материалов. 2024;90(6):5-14. https://doi.org/10.26896/1028-6861-2024-90-6-5-14
For citation:
Shchemelev I.S., Zinov’ev N.A., Ivanov A.V., Ferapontov N.B., Mikheev I.V., Gagarin A.N. A sensory granular material based on impregnated composite «cross-linked polyvinyl alcohol – magnetite» for the determination of carbohydrates by optical micrometry. Industrial laboratory. Diagnostics of materials. 2024;90(6):5-14. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-5-14