Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantification of lithium and calcium in novel hydroxyapatite-based materials for osteoplasty using flame photometry

https://doi.org/10.26896/1028-6861-2024-90-6-23-26

Abstract

A method for quantification of lithium additives and calcium as a sample base component during synthesis of new materials based on hydroxyapatites (HA) using flame atomic emission spectroscopy is proposed to reveal a connection in the chain «synthesis conditions — composition — functional properties». Ceramic samples were obtained by co-deposition using Li carbonate and calcination at 1300°C. The materials were synthesized with a lithium content of 0.25 to 1 at.%, some of the samples were synthesized with the co-addition of cerium Ce(NO3)3 from 0.25 to 1 at.%. The method of additives and reference solutions were used to determine Li in HA samples. The determination of calcium was carried out in separate aliquots after 50-fold dilution. It is shown that the determination of lithium at concentrations of 0.1 mg/liter by flame photometry in hydroxyapatite solutions is possible with Sr of 0.1. It is shown that it is difficult to dope the material with lithium by co-precipitation from solutions, while heat treatment during synthesis does not affect the result. It is proposed to use joint doping of the material with lithium and cerium, while at least 0.25 at.% Li is included in the HA structure. The developed technique can be used to determine lithium and calcium using a flame photometer PFA 378 at all stages of the synthesis of new materials based on HA.

About the Authors

A. A. Fomina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Alla A. Fomina,

49, Leninsky prosp., Moscow, 119334.



A. Yu. Demina,
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Anna Yu. Demina,

49, Leninsky prosp., Moscow, 119334.



N. A. Andreeva
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Nadezhda A. Andreeva,

49, Leninsky prosp., Moscow, 119334.



T. N. Penkina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Tatiyana N. Penkina,

49, Leninsky prosp., Moscow, 119334.



N. V. Petrakova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

Nataliya V. Petrakova,

49, Leninsky prosp., Moscow, 119334.



D. G. Filatova
Lomonosov Moscow State University
Russian Federation

Dariya G. Filatova,

1-3, Leninskiye Gory, Moscow, 119991.



References

1. Ptáček P. Apatites and their Synthetic Analogues — Synthesis, Structure, Properties and Applications. Chapter 6. Substituents and Dopants in the Structure of Apatite. Intech Open, 2016. DOI: 10.5772/62213

2. Šupová M. Substituted hydroxyapatites for biomedical applications: A review / Ceram. Int. 2015. Vol. 41. P. 9203 – 9231. DOI: 10.1016/j.ceramint.2015.03.316

3. Bose S., Fielding G., Tarafder S., Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics / Trends Biotechnol. 2013. Vol. 31. N 10. P. 594 – 605. DOI: 10.1016/j.tibtech.2013.06.005

4. Wang W., Wei J., Lei D., et al. 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration / Composites, Part B. 2023. Vol. 256. 110641. DOI: 10.1016/j.compositesb.2023.110641

5. Panda S., Biswas Ch. K., Paul S. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering / Ceram. Int. 2021. Vol. 47. P. 28122 – 28144. DOI: 10.1016/j.ceramint.2021.07.100

6. Wang Y. P., Yang X., Qin H., et al. In vitro study on the degradation of Lithium-doped hydroxyapatite for bone tissue engineering scaffold / Mater. Sci. Eng., C. 2016. Vol. 66. P. 185 – 192. DOI: 10.1016/j.msec.2016.04.065

7. Drdlik D., Slama M., Hadraba H., et al. Physical, mechanical, and biological properties of electrophoretically deposited lithium-doped calcium phosphates / Ceram. Int. 2018. Vol. 44. N 3. P. 2884 – 2891. DOI: 10.1016/j.ceramint.2017.11.035

8. Duta L., Chifiriuc M. C., Popescu-Pelin G., et al. Pulsed Laser Deposited Biocompatible Lithium-Doped Hydroxyapatite Coatings with Antimicrobial Activity / Coatings. 2019. Vol. 9. N 1. 54. DOI: 10.3390/coatings9010054

9. Alicka M., Sobierajska P., Kornicka K., et al. Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li+ and co-doped with europium (III) and samarium (III) ions / Mater. Sci. Eng., C. 2019. Vol. 99. P. 1257 – 1273. DOI: 10.1016/j.msec.2019.02.073

10. Cipriani A., Pretty H., Hawton K., Geddes J. R. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials / Am. J. Psychiatry. 2005. Vol. 162. P. 1805 – 1819. DOI: 10.1176/appi.ajp.162.10.1805

11. Bernard A. Lithium / Handbook on the Toxicology of Metals, G. F. Nordberg, M. Costa, Eds. Chapter 20. — Academic Press, 2022. P. 495 – 500. DOI: 10.1016/B978-0-12-822946-0.00018-0

12. Jia B., Hao D., Qiao F., et al. Metal-doped bioceramic nanopowders with tunable structural properties aimed at enhancing bone density: Rapid synthesis and modeling / Ceram. Int. 2020. Vol. 46. N 18. Part A. P. 28064 – 28083. DOI: 10.1016/j.ceramint.2020.07.301

13. Kolekar Tanaji V., Bandgar Sneha S., Yadav Hemraj M., et al. Hemolytic and biological assessment of lithium substituted hydroxyapatite nanoparticles for L929 and Hela cervical cancer cells / Inorg. Chem. Commun. 2022. Vol. 137. 109172. DOI: 10.1016/j.inoche.2021.109172

14. Popescu A. C., Florian P. E., Stan G. E., et al. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants / Appl. Surf. Sci. 2018. Vol. 439. P. 724 – 735. DOI: 10.1016/j.apsusc.2018.01.008

15. Badran H., Yahia I. S., Hamdy Mohamed S., Awwad N. S. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties / Radiat. Phys. Chem. 2017. Vol. 130. P. 85 – 91. DOI: 10.1016/j.radphyschem.2016.08.001

16. Kaygil O., Keser S., Ates T., Yakuphanoglu F. Synthesis and characterization of lithium calcium phosphate ceramics / Ceram. Int. 2013. Vol. 39. N 7. P. 7779 – 7785. DOI: 10.1016/j.ceramint.2013.03.037

17. Salam N., Gibson I. R. Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro / Biomater. Adv. 2022. Vol. 140. 213068. DOI: 10.1016/j.bioadv.2022.213068

18. Hurle K., Mai F. R., Ribeiro V. P., et al. Osteogenic lithium-doped brushite cements for bone regeneration / Bioact. Mater. 2022. Vol. 16. P. 403 – 417. DOI: 10.1016/j.bioactmat.2021.12.025

19. Marycz K., Sobierajska P., Smieszek A., et al. Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP: Li+, Eu3+ application in theranostics / Mater. Sci. Eng., C. 2017. Vol. 78. P. 1 51 – 162. DOI: 10.1016/j.msec.2017.04.041

20. Lewen N., Nugent D. The use of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) in the determination of lithium in cleaning validation swabs / J. Pharm. Biomed. Anal. 2010. Vol. 52. P. 652 – 655. DOI: 10.1016/j.jpba.2010.02.015

21. Aljerf L., Mashlah A. Characterization and validation of candidate reference methods for the determination of calcium and magnesium in biological fluids / Microchem. J. 2017. Vol. 132. P. 411 – 421. DOI: 10.1016/j.microc.2017.03.001

22. Pickett E. E., Hawkins J. L. Determination of lithium in small-animal tissues at physiological levels by flame emission photometry / Anal. Biochem. 1981. Vol. 112. N 2. P. 213 – 218. DOI: 10.1016/0003-2697(81)90283-9

23. Nikitina Y. O., Petrakova N. V., Lysenkov A. S., et al. Cerium-containing hydroxyapatites with luminescent properties / Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. P. 1067 – 1072. DOI: 10.1134/S0036023621080179

24. Belokoneva E. L., Volkov A. S., Dimitrova O. V., et al. Hydrothermally synthesized first acentric apatite (Bi5Na5)[PO4]6Cl2 with wide Bi-Na isomorphism and doubled c-axis / New J. Chem. 2024. N 17. DOI: 10.1039/D4NJ00480A


Review

For citations:


Fomina A.A., Demina, A.Yu., Andreeva N.A., Penkina T.N., Petrakova N.V., Filatova D.G. Quantification of lithium and calcium in novel hydroxyapatite-based materials for osteoplasty using flame photometry. Industrial laboratory. Diagnostics of materials. 2024;90(6):23-26. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-23-26

Views: 243


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)