Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Evaluation of the degree of starch pyrodextrinization by binary digital image colorimetry

https://doi.org/10.26896/1028-6861-2024-90-6-27-35

Abstract

Dextrins are widely used in the food, textile, paper, mining, chemical and pharmaceutical industries. Pyrodextrin is one of the most known representatives of these materials. Its production is based on the heat treatment of starch in the absence of a catalyst. A significant demand for pyrodextrin, as well as an increase in the scope of its application, necessitates the improvement of existing methods of quality control of this material. The main parameter characterizing the solubility, viscosity and intensity of color is the degree of starch pyrodextrinization. The evaluation of this parameter in conditions of industrial production is carried out by visual observation. The use of such organoleptic methods leads to significant measurement errors. In this study, we have summarized information about the mechanism of starch pyrodextrinization, and considered the effect of the temperature and heating time on the color intensity of the resulting dextrins. A method of binary digital image colorimetry is proposed to be used for assessing the degree of starch pyrodextrinization, i.e., to measure the level of binarization of dextrins with subsequent determination of this parameter, taking into account the initial assumptions. The possibility of using a specialized software for quantitative analysis of images for the purpose of their transformation and subsequent determination of the binarization level of the studied dextrins is shown. The significance of the effect of temperature and heating time on the degree of starch pyrodextrinization was shown by analysis of variance (ANOVA). The mathematical description of the dependence of these parameters was obtained by multiple regression. The results presented in the study confirm the applicability of binary digital image colorimetry to assessing the degree of starch pyrodextrinization and process control.

About the Authors

S. V. Araslankin
National Research Ogarev Mordovia State University; LLC «Exponenta»
Russian Federation

Sergey V. Araslankin,

68, Bolshevistskaya ul., Saransk, 430005;

26A, Stanislavskaya ul., Ruzaevka, 431448.



M. V. Shchankin
LLC «Exponenta»
Russian Federation

Mikhail V. Shchankin, 

26A, Stanislavskaya ul., Ruzaevka, 431448.



E. N. Golovina
JSC «Ruzkhimmash»
Russian Federation

Ekaterina N. Golovina, 

Ruzaevka, 431440.



O. V. Nipruk
Lobachevsky Nizhny Novgorod National Research State University
Russian Federation

Oksana V. Nipruk, 

23, Gagarina prosp., Nizhny Novgorod, 603022.



A. A. Gubina
National Research Ogarev Mordovia State University
Russian Federation

Anna A. Gubina,

68, Bolshevistskaya ul., Saransk, 430005.



References

1. Lei N., Chai S., Xu M., et al. Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study / Int. J. Biol. Macromol. 2020. Vol. 147. P. 109 – 116. DOI: 10.1016/j.ijbiomac.2020.01.060

2. Gupta D., Singh A., Jaiswal R., et al. Functional characteristics, dry heating and irradiation treatment of starch — A short review / AUDJG — Food Technology. 2020. Vol. 44. P. 212 – 229. DOI: 10.35219/foodtechnology.2020.1.13

3. Bai Y., Shi Y. C. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy / Carbohydr. Polym. 2016. Vol. 151. P. 426 – 433. DOI: 10.1016/j.carbpol.2016.05.058

4. Laurentin A., Cárdenas M., Ruales J., et al. Preparation of indigestible pyrodextrins from different starch sources / J. Agric. Food Chem. 2003. Vol. 51. P. 5510 – 5515. DOI: 10.1021/JF0341518

5. Chena J., Xiao J., Wang Z., et al. Effects of reaction condition on glycosidic linkage structure, physical-chemical properties and in vitro digestibility of pyrodextrins prepared from native waxy maize starch / Food Chem. 2020. Vol. 320. 126491. DOI: 10.1016/j.foodchem.2020.126491

6. Bai Y., Cai L., Doutch J., et al. Structural Changes from Native Waxy Maize Starch Granules to Cold Water-Soluble Pyrodextrin during Thermal Treatment / J. Agric. Food Chem. 2014. Vol. 62. P. 4186 – 4194. DOI: 10.1021/jf5000858

7. Han X., Kang J., Bai Y., et al. Structure of pyrodextrin in relation to its retrogradation properties / Food Chem. 2018. Vol. 242. P. 169 – 173. DOI: 10.1016/j.foodchem.2017.09.015

8. Srivastava H. C., Parnar R. S., Dave G. B. Studies on Dextrinization. Part I. Pyrodextrinization of Corn Starch in the Absence of Any Added Catalyst / Starch. 1970. Vol. 22. N 2. P. 49 – 54. DOI: 10.1002/star.19700220204

9. Lin C. L., Lin J. H., Zeng H. M., et al. Indigestible pyrodextrins prepared from corn starch in the presence of glacial acetic acid / Carbohydr. Polym. 2018. Vol. 188. P. 68 – 75. DOI: 10.1016/j.carbpol.2018.01.087

10. Le Thanh-Blicharz J., Błaszczak W., Szwengiel A., et al. Molecular and Supermolecular Structure of Commercial Pyrodextrins / J. Food Sci. 2016. Vol. 81. N 9. P. 135 – 142. DOI: 10.1111/1750-3841.13401

11. Li H., Ji J., Yang L., et al. Structural and physicochemical property changes during pyroconversion of native maize starch / Carbohydr. Polym. 2020. Vol. 245. 116560. DOI: 10.1016/j.carbpol.2020.116560

12. Campechano-Carrera E., Corona-Cruz A., Chel-Guerrero L., Betancur-Ancona D. Effect of pyrodextrinization on available starch content of Lima bean (Phaseolus lunatus) and Cowpea (Vigna unguiculata) starches / Food Hydrocolloids. 2007. Vol. 21. P. 472 – 479. DOI: 10.1016/j.foodhyd.2006.06.006

13. State Standard GOST 6034–2014. Dextrins. Technical conditions. — Moscow: Standartinform, 2017. — 10 p. [in Russian].

14. Interstate Standard GOST 7698–1993. Starch. Acceptance rules and methods of analysis. — Minsk, 1995. — 40 p. [in Russian].

15. Ivanov V. M., Kuznetsova O. V. Chemical colorimetry: potential of the method, application areas and future prospects / Russ. Chem. Rev. 2001. Vol. 70. N 5. P. 357 – 372. DOI: 10.1070/RC2001v070n05ABEH000636

16. Shults E. V., Monogarova O. V., Oskolok K. V. Digital colorimetry: analytical possibilities and prospects of use / Vestn. Mosk. Univ. Ser. 2. Khimiya. 2019. Vol. 60. N 2. P. 79 – 87 [in Russian]. DOI: 10.3103/S002713141902007X

17. Akhnazarova S. L., Kafarov V. V. Methods for optimizing an experiment in chemical technology: A textbook for chemical engineering specialties of universities. — Moscow: Vysshaya shkola, 1985. — 327 p. [in Russian].

18. Araslankin S. V., Kostryukov S. G., Tomilin O. B. Modern methods in technical and economic optimization of compositions of dry mixtures (part II) / ALITinform: Cement. Concrete. Dry mixtures. 2019. N 1. P. 56 – 65 [in Russian].

19. Bolshev L. N., Smirnov I. V. Tables of mathematical statistics. — Moscow: Nauka, 1983. — 416 p. [in Russian].


Review

For citations:


Araslankin S.V., Shchankin M.V., Golovina E.N., Nipruk O.V., Gubina A.A. Evaluation of the degree of starch pyrodextrinization by binary digital image colorimetry. Industrial laboratory. Diagnostics of materials. 2024;90(6):27-35. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-27-35

Views: 253


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)