Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the structure of filler composite wire for surfacing wear-resistant layers

https://doi.org/10.26896/1028-6861-2024-90-6-42-50

Abstract

The quality and properties of the deposited wear-resistant layers depend on the technological modes of surfacing and the type of filler materials used. The results of studying the structure of filler composite wire for surfacing wear-resistant layers are presented. Wires based on aluminum alloy (hypereutectic silumin), silicon carbide (SiC) and titanium intermetallic (Ti2NbAl) powders were produced by powder metallurgy. Powders of SiC or Ti2NbAl (their content in the final material about 5 wt.%) and the silumin matrix alloy prepared in the form of chips were processed in a planetary mill. The wire was produced by hot extrusion after holding the prepared components at a temperature of 600°C. Tribological tests of the samples were carried out under conditions of dry sliding friction (the friction coefficient was recorded continuously during tests). It is shown that the selected modes of extrusion and a preliminary preparation of the material in a planetary mill make it possible to obtain a non-porous compact material. An analysis of the structure of the resulting material and the nature of the distribution of reinforcing discrete powders revealed that Ti2NbAl particles are uniformly distributed over the cross section of the wire, while SiC particles are practically absent in the central part and are concentrated along the periphery of the section. The results obtained can be used when using composite wire as a filler material. Data on the nature of the distribution of reinforcing fillers should be taken into account when choosing schemes and modes of arc surfacing processes.

About the Authors

I. E. Kalashnikov
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Igor E. Kalashnikov,

49, Leninsky prosp., Moscow, 119334.



R. S. Mikheev
Bauman Moscow State Technical University
Russian Federation

Roman S. Mikheev,

5, 2-ya Baumanskaya ul., Moscow, 105005.



L. I. Kobeleva
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Lubov I. Kobeleva,

49, Leninsky prosp., Moscow, 119334.



P. A. Bykov
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Pavel A. Bykov,

49, Leninsky prosp., Moscow, 119334.



I. V. Katin
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Igor V. Katin,

49, Leninsky prosp., Moscow, 119334.



O. A. Ovchinnikova
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Olga A. Ovchinnikova,

49, Leninsky prosp., Moscow, 119334.



References

1. Gu Z., Xi S., Mao P., Wang C. Microstructure and wear behavior of mechanically alloyed powder AlxMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding / Surface and Coatings Technology. 2020. Vol. 401. 126244. DOI: 10.1016/j.surfcoat.2020.126244

2. Ming Pang, Quan-Xiu Liu, Xiao-Han Zhang, Guang Liu. Simulation research on the thermal-mechanical coupling of YSZ thermal protective coatings prepared by laser-plasma composite heat source on the surface of high-intensity diesel engine cylinder head / Optik. 2020. Vol. 207. 164425. DOI: 10.1016/j.ijleo.2020.164425

3. Ostolaza M., Zabala A., Arrizubieta J., et al. High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition / Friction. 2024. N 12. P. 522 – 538. DOI: 10.1007/s40544-023-0790-2

4. Afanas’eva L. E., Ratkevich G. V. Laser surfacing of NiCrBSiFe-WC coating using a multichannel laser / Pis’ma Mater. 2018. Vol. 8. Т 3(31). P. 268 – 273 [in Russian]. DOI: 10.22226/2410-3535-2018-3-268-273

5. Pacheco J. T., Meura V. H., Teixeira M. F., et al. Laser Cladding of Fe-NbC Alloy on AISI 304L: The Effect of Processing Parameters on Microstructure and Wear / Journal of Materials Engineering and Performance. 2023. DOI: 10.1007/s11665-023-09017-7

6. Arunkumar S., Subramani Sundaram M., Sukethkanna K., Vigneshwara S. A review on aluminium matrix composite with various reinforcement particles and their behavior / Materials Today: Proceedings. 2020. P. 494 – 490. DOI: 10.1016/j.matpr.2020.05.053

7. Vineet Chak, Himadri Chattopadhyay, Dora T. L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites / Journal of manufacturing processes. 2020. Vol. 56. P. 1059 – 1074. DOI: 10.1016/j.jmapro.2020.05.042

8. Chen J., Gu L., He G. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites / Adv. Manuf. 2020. Vol. 8. P. 279 – 315. DOI: 10.1007/s40436-020-00313-2

9. Riquelme A., Rodrigo P., Escalera-Rodriguez M., Rams J. Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding / Results in Physics. 2019. Vol. 13. 102160. DOI: 10.1016/j.rinp.2019.102160

10. Mikheev R. S., Kalashnikov I. E., Bykov P. A., Kobeleva L. I. Investigation of the structure and properties of aluminu mmatrix composite coatings for tribotechnical purposes formed on steel substrates / Journal of Physics: Conference Series. 2022. Vol. 2275. 012007. DOI: 10.1088/7142-6596/2275/1/012007

11. Roussos C., Deligiannis S., Ioannidou, D., et al. Microstructural and Mechanical Properties of Laser Cladding-Deposited AISI 1060 Steel with a Mixture of 410L Alloy and 4140 Alloy Powders / Journal of Materials Engineering and Performance. 2023. DOI: 10.1007/s11665-023-08767-8

12. Kalashnikov I. E., Kolmakov A. G., Bolotova L. K., et al. Technological parameters of production and properties of babbit-based composite surfacing rods and deposited antifriction coatings / Inorganic Materials: Applied Research. 2019. Vol. 10. N 3. P. 635 – 641. DOI: 10.1134/S2075113319030122

13. Kasimtsev A. V., Yudin S. N., Sviridova T. A., et al. Production of a sintered alloy based on the TiAl intermetallic compound. Part 1. Calcium-hydride fabrication technology of the Ti – 47Al – 2Nb – 2Cr powder alloy and its properties / Russ. J. Non-Ferrous Met. 2015. Vol. 56. P. 548 – 554 [in Russian]. DOI: 10.3103/S1067821215050065

14. Marín M. M., Camacho A. M., Pérez J. A. Influence of the temperature on AA6061 aluminum alloy in a hot extrusion process / Procedia Manufacturing. 2017. Vol. 13. P. 327 – 334. DOI: 10.1016/j.promfg.2017.09.084

15. Ab Rahim S., Lajis M., Ariffin S. A review on recycling aluminum chips by hot extrusion process / Procedia CIRPV. 2015. P. 761 – 766. DOI: 10.1016/j.procir.2015.01.013

16. Stroganov G. B. High-strength cast aluminum alloys. — Moscow: Metallurgiya, 1985. — 216 p. [in Russian].

17. Benarieb I., Ber L., Antipov K., Sbitneva S. Trends in development of wrought alloys of Al – Mg – Si – (Cu) system. Part 1. (Review) / Aviacionnye materialy and tehnologii. 2019. N 3. P. 14 – 22 [in Russian]. DOI: 10.18577/2071-9140-2019-0-3-14-22

18. Kalashnikov I. E., Kobeleva L. I., Bykov P. A., et al. Estimating the Uniformity of the Distribution of Ti2NbAl Particles in an Aluminum-Matrix Composite Material / Inorganic Materials: Applied Research. 2022. Vol. 13. N 5. P. 1346 – 1351. DOI: 10.1134/S2075113322050148

19. Kobeleva L. I., Kalashnikov I. E., Bykov P. A., et al. Structure and Tribological Properties of the AO20 – 1 Alloy — Ti2NbAl Intermetallic Compound Composite Material / Russian Metallurgy (Metally). 2020. Vol. 2020. N 10. P. 1137 – 1141. DOI: 10.1134/S0036029520100134

20. Mikheev R. S., Kalashnikov I. E. Using of mathematical methods in the study of temperature-time conditions of the arc surfacing upon manufacturing of steel-aluminum compositions / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 3. P. 64 – 75 [in Russian]. DOI: 10.26896/1028-6861-2021-87-3-64-75


Review

For citations:


Kalashnikov I.E., Mikheev R.S., Kobeleva L.I., Bykov P.A., Katin I.V., Ovchinnikova O.A. Study of the structure of filler composite wire for surfacing wear-resistant layers. Industrial laboratory. Diagnostics of materials. 2024;90(6):42-50. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-42-50

Views: 173


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)