

X-ray diffraction study of W + (Ni, Fe, Co) powder compositions
https://doi.org/10.26896/1028-6861-2024-90-6-51-58
Abstract
A method of sintering tungsten nanopowders with individual components (added or deposited), e.g., Ni, Fe, Co, is used in the production of new high-strength nano- and fine-grained heavy tungsten alloys. The presence of such components facilitates conditions for traditional liquid-phase sintering of tungsten-based powders or for solid-phase sintering using spark plasma sintering technology. We present the results of an X-ray diffraction study of binary systems of W + (Ni, Fe, Co) powders containing 95 – 99.5 wt.% of tungsten. The evaluation of the reproducibility of the results demonstrated that the intensity of the X-ray diffraction maxima of the studied phases is replicated with an accuracy of at least 3% for the main phase (tungsten) and at least 6% for the additive (specifically, nickel). It has been demonstrated that in analysis of powders using X-ray diffraction the sensitivity to nickel, iron and cobalt is 0.5, 1, and 3 wt.%, respectively. The obtained estimates are compared with the value calculated proceeding from structural and crystallographic phase data. The impracticality of using structural theoretical relations for quantitative phase analysis of W – Fe and W – Co systems is demonstrated due to the significant absorption of CuKα radiation by iron and cobalt. The results obtained can be used to improve the technique of X-ray diffraction control of the phase composition of high-strength nano- and fine-grained heavy tungsten alloys.
About the Authors
N. V. MalekhonovaRussian Federation
Nataliya V. Malekhonova,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
K. E. Smetanina
Russian Federation
Ksenia E. Smetanina,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
M. A. Komkov
Russian Federation
Maksim A. Komkov,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
E. A. Lantsev
Russian Federation
Evgeny A. Lantsev,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
Artem A. Murashov
Russian Federation
Artem A. Murashov,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
References
1. Senthilnathan N., Raja Annamalai A., Venkatachalam G. Sintering of Tungsten and Tungsten Heavy Alloys of W-Ni-Fe and W-Ni-Cu: a Review / Transactions of the Indian Institute of Metals. 2017. Vol. 70. N 5. P. 1161 – 1176. DOI: 10.1007/s12666-016-0936-2
2. Savitsky E. M., Povarova K. B., Makarov P. V. Tungsten metallurgy. — Moscow: Metallurgiya, 1978. — 224 p. [in Russian].
3. Wurster S., Baluc N., Battabyal M., et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials / Journal of Nuclear Materials. 2013. Vol. 442. N 1 – 3. P. 181 – 189. DOI: 10.1016/j.jnucmat.2013.02.074
4. Sahin Y. Recent Progress in Processing of Tungsten Heavy Alloys / Journal of Powder Technology. 2014. Vol. 3 – 4. P. 1 – 22. DOI: 10.1155/2014/764306
5. German R. M. Sintered tungsten heavy alloys: Review of microstructure, strength, densification, and distortion / International Journal of Refractory Metals and Hard Materials. 2022. Vol. 108. Art. ID 105940. DOI: 10.1016/j.ijrmhm.2022.105940
6. Johnson J. L. Sintering of refractory metals / Sintering of Advanced Materials. 2010. P. 356 – 388. DOI: 10.1533/9781845699949.3.356
7. Das J., Kiran U., Chakraborty A., Prasad N. Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique / International Journal of Refractory Metals and Hard Materials. 2009. Vol. 27. N 3. P. 577 – 583. DOI: 10.1016/j.ijrmhm.2008.08.003
8. Lassner E., Schubert W.-D. Tungsten. — Springer, 1999. — 422 p. DOI: 10.1007/978-1-4615-4907-9
9. Blagoveshenskiy Yu. V., Isaeva N. V., Blagoveshenskaya N. V., et al. Methods of compacting nanostructured tungsten-cobalt alloys from nanopowders obtained by plasma chemical synthesis / Inorganic Materials Applied Research. 2015. Vol. 6. N 5. P. 415 – 426. DOI: 10.1134/S2075113315050032
10. Huang K., Estel L., Wu L., et al. Tungsten Heavy Alloys Processing via Microwave Sintering, Spark Plasma Sintering, and Additive Manufacturing: a Review / Process. 2022. Vol. 10. N 11. Art. ID 2352. DOI: 10.3390/PR10112352
11. Chuvildeev V. N., Nokhrin A. V., Boldin M. S., et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W-Ni-Fe tungsten heavy alloys / Journal of Alloys and Compounds. 2019. Vol. 773. P. 666 – 688. DOI: 10.1016/j.jallcom.2018.09.176
12. Ding L., Xiang D., Li Y., et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering / International Journal of Refractory Metals and Hard Materials. 2012. Vol. 33. P. 65 – 69. DOI: 10.1016/j.ijrmhm.2012.02.017
13. Ogundipe A., Greenberg B., Braida W., et al. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys / Corrosion Science. 2006. Vol. 48. N 10. P. 3281 – 3297. DOI: 10.1016/j.corsci.2005.12.004
14. Rietveld H. M. The Rietveld method / Physica Scripta. 2014. Vol. 89. N 9. Art. ID 098002. DOI: 10.1088/0031-8949/89/9/098002
15. Drozhilkin P. D., Smetanina K. E., Andreev P. V., et al. Assessment of the data repeatability of x-ray diffraction study for silicon nitride powders of different dispersion / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 4. P. 27 – 32 [in Russian]. DOI: 10.26896/1028-6861-2022-88-4-27-32
16. Guo L., Tjahjono M., Schreyer M., Garland M. A multicomponent calibration approach to the microabsorption problem involving inorganic mixtures / Journal of Applied Crystallography. 2011. Vol. 44. N 1. P. 25 – 31. DOI: 10.1107/S0021889810053094
17. Xu H., He L.-L., Pei Y.-F., et al. Recent progress of radiation response in nanostructured tungsten for nuclear application / Tungsten. 2021. Vol. 3 – 4. DOI: 10.1007/s42864-021-00075-9
18. Andreev P. V., Smetanina K. E., Lantsev E. A. Study of the phase composition of fine-grained tungsten carbide based ceramic materials by X-ray phase analysis / Industr. Lab. Mater. Diagn. 2019. Vol. 85. N 8. P. 37 – 42 [in Russian]. DOI: 10.26896/1028-6861-2019-85-8-37-42
19. Pecharsky V., Zavalij P. Fundamentals of powder diffraction and structural characterization of materials. — Springer, 2005. — 713 p. DOI: 10.1007/978-0-387-09579-0
Review
For citations:
Malekhonova N.V., Smetanina K.E., Komkov M.A., Lantsev E.A., Murashov A.A. X-ray diffraction study of W + (Ni, Fe, Co) powder compositions. Industrial laboratory. Diagnostics of materials. 2024;90(6):51-58. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-51-58