

Effect of surface condition on the fatigue characteristics of Ti – 6Al – 4V, titanium alloy produced by selective laser melting
https://doi.org/10.26896/1028-6861-2024-90-6-76-83
Abstract
The effect of various types of surface post-treatment on the fatigue characteristics of Ti – 6Al – 4V, titanium alloy samples produced by selective laser melting has been studied. The values of the low-cycle fatigue of Ti – 6Al – 4V, titanium alloy samples as built and after turning, waterjet and vibro-grinding treatment were compared. The surface roughness Ra nano-hardness after selective laser melting were 8 μm and 5.1 GPa, respectively. These samples have a low fatigue life. The surface roughness Ra after vibro-grinding treatment decreased to 3.5 μm, whereas the fatigue characteristics remained the same. After turning, the minimum roughness value 0.1 μm at the nanohardness of 5 GPa were obtained. This treatment allows a slight increase in the fatigue characteristics. However, the maximum fatigue properties were obtained on samples after waterjet treatment (Ra attained 1 μm and the nano-hardness of the subsurface zone increased to 6.1 GPa). One of the reasons for a significant increase in the fatigue characteristics after waterjet treatment is hardening of the surface layer of the material, which becomes an effective obstacle to the occurrence and spread of microcracks. Waterjet treatment of samples produced by selective laser melting makes it possible to solve the problem of increasing fatigue characteristics and improving the surface quality of Ti – 6Al – 4V, titanium alloy products to be used in biomedicine.
About the Authors
M. Yu. GryaznovRussian Federation
Mikhail Yu. Gryaznov,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
S. V. Shotin
Russian Federation
Sergey V. Shotin,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
V. N. Chuvildeev
Russian Federation
Vladimir N. Chuvildeev,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
A. V. Semenycheva
Russian Federation
Aleksandra V. Semenycheva,
23, prosp. Gagarina, Nizhny Novgorod, 603022.
References
1. Liu S., Shin Y. C. Additive manufacturing of Ti – 6Al – 4V, alloy: A review / Mater. Des. 2019. Vol. 164. P. 107552. DOI: 10.1016/j.matdes.2018.107552
2. Tshephe T. S., Akinwamide S. O., Olevsky E., Olubambi P. A. Additive manufacturing of titanium-based alloys. A review of methods, properties, challenges, and prospects / Heliyon. 2022. Vol. 8. P. 09041. DOI: 10.1016/j.heliyon.2022.e09041
3. Cerri E., Ghio E., Bolelli G. Ti – 6Al – 4V,-ELI Alloy Manufactured via Laser Powder-Bed Fusion and Heat-Treated below and above the β-Transus: Effects of Sample Thickness and Sandblasting Post-Process / Appl. Sci. 2022. Vol. 12. P. 5359. DOI: 10.3390/app12115359
4. Vyacheslavov A. V., Malinkina Yu. Yu., Bichaev V. B., et al. Analysis of corrosion-resistant titanium slloys doped with ruthenium by ICP-AES / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 5. P. 14 – 19 [in Russian]. DOI: 10.26896/1028-6861-2018-84-5-14-19
5. Kalienko M. S., Volkov A. V., Zhelnina A. V. Estimation of oxygen ingress depth in titanium alloys after elevator temperature exposure / Industr. Lab. Mater. Diagn. 2018. Vol. 84. N 3. P. 32 – 35 [in Russian]. DOI: 10.26896/1028-6861-2018-84-3-32-35
6. Veiga C., Davim J. P., Loureiro A. J. R. Review on machinability of titanium alloys: the process perspective / Rev. Adv. Mater. Sci. 2013. Vol. 34. P. 148 – 164.
7. Kolachev B. A. (ed.). Semi-finished products made of titanium alloys. — Moscow: ONTI VILS, 1996. — 581 p. [in Russian].
8. Koju N., Niraula S., Fotovvati B. Additively Manufactured Porous Ti – 6Al – 4V, for Bone Implants: A Review / Metals. 2022. Vol. 12. P. 687. DOI: 10.3390/met12040687
9. Bambach M., Sizova I., Szyndler J., et al. On the hot deformation behavior of Ti – 6Al – 4V, made by additive manufacturing / J. Mater. Process. Technol. 2021. Vol. 288. P. 116840. DOI: 10.1016/j.jmatprotec.2020.116840
10. Shorstov S. Yu., Marakhovsky P. S., Pakhomkin S. I., Razmakhov M. G. Study of the thermophysical properties of heat-resistant intermetallic titanium γ-alloy obtained using methods of shaped casting and additive technologies / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 9. P. 28 – 34 [in Russian]. DOI: 10.26896/1028-6861-2022-88-9-28-34
11. Kelly C. N., Evans N. T., Irvin C. W., et al. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti – 6Al – 4V, fabricated by selective laser melting / Mater. Sci. Eng. C. 2019. Vol. 98. P. 726 – 736. DOI: 10.1016/j.msec.2019.01.024
12. Depboylu F. N., Yasa E., Poyraz O., et al. Titanium based bone implants production using laser powder bed fusion technology / J. Mater. Res. Technol. 2022. Vol. 17. P. 1408 – 1426. DOI: 10.1016/j.jmrt.2022.01.087
13. Guo A. X. Y., Cheng L., Zhan S., et al. Biomedical applications of the powder-based 3D printed titanium alloys: A review / J. Mater. Sci. Technol. 2022. Vol. 125. P. 252 – 264. DOI: 10.1016/j.jmst.2021.11.084
14. Hoque M. E., Showva N.-N., Ahmed M., et al. Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects / Heliyon. 2022. Vol. 8. P. e11300. DOI: 10.1016/j.heliyon.2022.e11300
15. Aufa A. N., Hassan M. Z., Ismail Z. Recent advances in Ti – 6Al – 4V, additively manufactured by selective laser melting for biomedical implants: Prospect development / J. Alloys Compd. 2022. Vol. 896. P. 163072. DOI: 10.1016/j.jallcom.2021.163072
16. Kim K.-H., Ramaswamy N. Electrochemical surface modification of titanium in dentistry / Dent. Mater. J. 2009. Vol. 28. P. 20 – 36. DOI: 10.4012/dmj.28.20
17. Schwartz Z., Raz P., Zhao G., et al. Effect of micrometer-scale roughness of the surface of Ti – 6Al – 4V, pedicle screws in vitro and in vivo / J. Bone Joint Surg. Am. 2008. Vol. 90. P. 2485 – 2498. DOI: 10.2106/jbjs.g.00499
18. de Wild M., Schumacher R., Mayer K., et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit / Tissue Eng. Part A. 2013. Vol. 19. P. 2645 – 2654. DOI: 10.1089/ten.tea.2012.0753
19. Zhao G., Raines A. L., Wieland M., et al. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography / Biomaterials. 2007. Vol. 28. P. 2821 – 2829. DOI: 10.1016/j.biomaterials.2007.02.024
20. Chillman A., Ramulu M., Hashish M. Waterjet Peening and Surface Preparation at 600 MPa: A Preliminary Experimental Study / J. Fluids Eng. 2007. Vol. 129. N 4. P. 485 – 490. DOI: 10.1115/1.2436580
21. Song F., Yao S., Liu L., et al. Submerged deflecting abrasive waterjet peening for improving the surface integrity and solid particle erosion resistance of Ti – 6Al – 4V, alloy / Surf. Coat. Technol. 2023. Vol. 470. P. 129780. DOI: 10.1016/j.surfcoat.2023.129780
22. Yao S.-L., Wang G.-Y., Yu H., et al. Influence of submerged micro-abrasive waterjet peening on surface integrity and fatigue performance of TA19 titanium alloy / Int. J. Fatigue. 2022. Vol. 164. P. 107076. DOI: 10.1016/j.ijfatigue.2022.107076
23. Huang L., Kinnell P., Shipway P. H. Removal of heat-formed coating from a titanium alloy using highpressure waterjet: Influence of machining parameters on surface texture and residual stress / J. Mater. Process Technol. 2015. Vol. 223. P. 129 – 138. DOI: 10.1016/j.jmatprotec.2015.03.053
24. Arola D., Alade A. E., Weber W. Improving fatigue strength of metals using abrasive waterjet peening/ Mach. Sci. Technol. an Int. J. 2006. Vol. 10. N 2. P. 197 – 218. DOI: 10.1080/10910340600710105
25. Lieblich M., Barriuso S., Ibáñez J. On the fatigue behavior of medical Ti – 6Al – 4V, roughened by grit blasting and abrasiveless waterjet peening J. Mech. Behav. Biomed. Mater. 2016. Vol. 63. P. 390 – 398. DOI: 10.1016/j.jmbbm.2016.07.011
26. Ramakrishnan S., Singaravelu D. L., Senthilkumarin V. Microstructure and Chemical State Analysis of Ti – 6Al – 4V, Alloy During Abrasive Water Jet Machining Process / Recent Advances in Materials Technologies. Select Proc. of ICEMT 2021, K. Rajkumar, E. Jayamani, P. Ramkumar, Eds. 2022. — Springer Nature Singapore Pte Ltd., P. 607 – 617.
27. Nguyen H. D., Pramanik A., Basak A. K., et al. A critical review on additive manufacturing of Ti – 6Al – 4V, alloy: microstructure and mechanical properties / J. Mater. Res. Technol. 2022. Vol. 18. P. 4641 – 4661. DOI: 10.1016/j.jmrt.2022.04.055
28. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals / Acta Mater. 2016. Vol. 117. P. 371. DOI: 10.1016/j.actamat.2016.07.019
29. Karakas Ö., Kardes F. B., Foti P., et al. An overview of factors affecting high-cycle fatigue of additive manufacturing metals / Fatigue Fract. Eng. Mater. Struct. 2023. Vol. 46. P. 1649 – 1668. DOI: 10.1111/ffe.13967
30. Fatemi A., Molaei R., Simsiriwong J., et al. Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti – 6Al – 4V, considering various processing and loading direction effects / Fatigue Fract. Eng. Mater. Struct. 2019. Vol. 42. P. 991 – 1009. DOI: 10.1111/ffe.13000
31. Jamshidi P., Aristizabal M., Kong W., et al. Selective Laser Melting of Ti – 6Al – 4V,: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications / Materials. 2020. Vol. 13. P. 2813. DOI: 10.3390/ma13122813
32. Li Y.-H., Wang B., Ma C.-P., et al. Material Characterization, Thermal Analysis, and Mechanical Performance of a Laser-Polished Ti Alloy Prepared by Selective Laser Melting / Metals. 2019. Vol. 9. P. 112. DOI: 10.3390/met9020112
Review
For citations:
Gryaznov M.Yu., Shotin S.V., Chuvildeev V.N., Semenycheva A.V. Effect of surface condition on the fatigue characteristics of Ti – 6Al – 4V, titanium alloy produced by selective laser melting. Industrial laboratory. Diagnostics of materials. 2024;90(6):76-83. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-6-76-83