

Application of piezoelectric sensors to aspartame determination in fluids
https://doi.org/10.26896/1028-6861-2024-90-7-27-31
Abstract
The study touches the development of piezoelectric sensors based on molecularly imprinted polymers (MIPs) with an aspartame imprint. The values of the imprinting factors and the selectivity coefficients of the developed sensor MIP-E951 in relation to target molecules and other sweeteners were calculated to confirm the ability of MIP -951 to selective detection of aspartame. The range of determined concentrations is 1 – 1 × 10–3 g/liter, the detection limit of aspartame is 5 × 10–4 g/liter. When analyzing model solutions, it was found that foreign components usually present in soft drinks do not interfere with the determination of aspartame using the developed sensor. The obtained sensors were tested for the determination of aspartame in soft drinks. Chromatographic analysis was used as a reference method. The results obtained by both methods indicate that piezo sensors can be successfully used for the analysis of aspartame in liquid media. The error of determination does not exceed 8%.
About the Authors
A. Yu. VybornyiRussian Federation
Anton Yu. Vybornyi
1, Universitetskaya pl., Voronezh, 394018, Russia
O. A. Shuvalova
Russian Federation
Oksana A. Shuvalova
1, Universitetskaya pl., Voronezh, 394018, Russia
A. N. Zyablov
Russian Federation
Alexander N. Zyablov
1, Universitetskaya pl., Voronezh, 394018, Russia
Nhat Linh Cao
Viet Nam
Cao Nhat Linh
30, Nguyen Thien Thuat, Nha Trang, 57127, Vietnam
References
1. Gromova O. A., Rebrov V. G. Sweeteners. Effecteveness and safety of application / Trudnyi Patsient. 2007. Vol. 5. N 12 – 13. P. 47 – 49 [in Russian].
2. Santos N. C., De Araujo L. M., De Luca G. C., et al. Metabolic effects of aspartame in adulthood: A systematic review and meta-analysis of randomized clinical trials / Crit. Rev. Food Sci. Nutr. 2018. Vol. 58. N 12. P. 2068 – 2081. DOI: 10.1080/10408398.2017.1304358
3. Hu H., Zhang P., Yin J., et al. The effect of aspartame on accelerating caspase-dependent apoptosis of pancreatic islet via ZIPK/STAT3/caspase 3 signaling pathway / J. Physiol. Biochem. 2024. Vol. 80. P. 53 – 65. DOI: 10.1007/s13105-023-00980-2
4. Landrigan P. J., Straif K. Aspartame and cancer — new evidence for causation / Environ. Health (London, UK). 2021. Vol. 20. P. 1 – 5. DOI: 10.1186/s12940-021-00725-y
5. Kazantsev A. V., Makhon’ko M. N. Sweet non-alcoholic carbonated drinks of modern production and diseases caused by their drinking / Byull. Med. Internet-Konf. 2014. Vol. 4. N 11. P. 1253 – 1256 [in Russian].
6. Interstate Standard GOST 30059–93. Non-alcoholic drinks. Methods of determination of aspartame, saccharin, caffeine, and sodium benzoate. — Moscow: Izd. standartov, 1996. — 6 p. [in Russian].
7. de Sousa R. C. S., de Fatima Gomides M., Costa K., et al. Optimization and Validation of an Analytical Method for the Determination of Sweeteners in Beverages by HPLC-ELSD / Food Anal. Methods. 2024. Vol. 17. P. 207 – 225. DOI: 10.1007/s12161-023-02562-w
8. Hamid M. A., Habib A., Mabrouk M., et al. Dual fluorescence-colorimetric sensor based on silver nanoparticles for determination of tobramycin in its pharmaceutical preparations / Spectrochim. Acta, Part A. 2023. Vol. 303. 123172. DOI: 10.1016/j.saa.2023.123172
9. Wenhao Ma, Wanyi Xie, Shaoxi Fang, et al. Nanopore electrochemical sensors for emerging hazardous pollutants detection / Electrochim. Acta. 2024. Vol. 475. P. 143678. DOI: 10.1016/j.electacta.2023.143678
10. Gültekin A., Karanfil G., Kuş M., et al. Preparation of MIP-based QCM nanosensor for detection of caffeic acid / Talanta. 2014. Vol. 119. P. 533 – 537. DOI: 10.1016/j.talanta.2013.11.053
11. Lisichkin G. V., Krutyakov Yu. A. Molecularly imprinted materials: synthesis, properties, applications / Russ. Chem. Rev. 2006. Vol. 75. N 10. P. 901 – 918. DOI: 10.1070/RC2006v075n10ABEH003618
12. Yeganegi A., Fardindoost S., Tasnim N., Hoorfar M. Molecularly imprinted polymers (MIP) combined with Raman spectroscopy for selective detection of Δ9-tetrahydrocannabinol (THC) / Talanta. 2024. Vol. 267. 1252721. DOI: 10.1016/j.talanta.2023.125271
13. Vu H. I., Kao N. L., Zyablov A. N. Analysis of the properties of films of molecularly imprinted polymers based on polyimide / Sorb. Khromatogr. Prots. 2021. Vol. 21. N 3. P. 360 – 368 [in Russian]. DOI: 10.17308/sorpchrom.2021.21/3469
14. Yahan Cui, Jie Ding, Yu Su, Lan Ding. Facile construction of magnetic hydrophilic molecularly imprinted polymers with enhanced selectivity based on dynamic non-covalent bonds for detecting tetracycline / Chem. Eng. J. (Amsterdam, Neth.). 2023. Vol. 52. Part 1. 139291. DOI: 10.1016/j.cej.2022.139291
15. Ruixia Gao, Yi Hao, Lili Zhang, et al. A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy / Chem. Eng. J. (Amsterdsm, Neth.). 2016. Vol. 284. P. 139 – 148. DOI: 10.1016/j.cej.2015.08.123
16. RF Pat. 137946, MPK H01L41/08. Piezoelectric sinsor based on molecularly imprinted polymer for determination of oleic acid / Zyablov A. N., Duvanova O. V., Volodina L. V., et al. N 2013144500/28. Publ. 27.02.2014 [in Russian].
17. Merenkova A. A., Zhuzhukin K. V., Zyablov A. N., Belchinskaya L. I. Determination of formaldehyde in production solutions using the piezoelectric sensors / Anal. Kontrol’. 2021. Vol. 25. N 2. P. 140 – 145 [in Russian].
Review
For citations:
Vybornyi A.Yu., Shuvalova O.A., Zyablov A.N., Cao N.L. Application of piezoelectric sensors to aspartame determination in fluids. Industrial laboratory. Diagnostics of materials. 2024;90(7):27-31. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-7-27-31