Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of chromium traces by atomic ionization spectroscopy in aqueous standard solutions and in gallium arsenide using the «rod – flame» atomization system

https://doi.org/10.26896/1028-6861-2024-90-8-5-11

Abstract

The results of the determination of trace amounts of chromium in aqueous standard solutions of chromium and in high purity gallium arsenide using atomic ionization spectroscopy are presented. Single — and two-step schemes of chromium atom excitation from the ground state 3d54s 7S3 to septet states 3d54p 7P2,3,4, 3d44s4p 7P2,3,4 were studied using a «rod – flame» atomizer. A mechanism of forming atomic-ionization signal for two-step excitation schemes is revealed. The most effective two step excitation schemes for chromium atoms were determined and experimentally studied at different wavelengths λ1 = 425.4 nm, λ2 = 451.4 nm; λ1 = 425.4 nm, λ2 = 426.1 nm. The low limit of chromium detection in aqueous water solutions was 50 pg/ml. The analytical potentiality of the «rod – flame» system for determining traces of chromium in gallium arsenide solutions has been demonstrated. The possibility of determining traces of chromium in gallium arsenide using a flame – rod atomizer at a level of 5 × 10–7 % is demonstrated. Two methods are proposed to increase the selectivity and sensitivity of atomic-ionization determination of chromium: optimization of the temperature program of the flame – rod atomizer and the use of two-stage excitation of chromium atoms. It is shown that the main interfering factor is the background attributed to the matrix ionization. Methods are proposed to reduce or eliminate the matrix impact, which ensure direct determination of elements in samples.

About the Author

A. T. Khalmanov
M. Ulugbek Samarkand State University of Architecture and Construction
Uzbekistan

Aktam T. Khalmanov,

70, Lolazor ul., Samarkand, 140147.



References

1. Bol’shakov A. A., Ganeev A. A., Nemets V. M. Prospects in analytical atomic spectrometry / Russ. Chem. Rev. 2006. Vol. 75. N 4. P. 289 – 302. DOI: 10.1070/RC2006v075n04ABEH001174

2. Fedosseev V. N., Kudryavtsev Yu., Mishin V. I. Resonance laser ionization of atoms for nuclear physics / Phys. Scr. 2012. Vol. 85. N 5. 058104. DOI: 10.1088/0031-8949/85/05/058104

3. Zorov N. B., Kuzyakov Yu. Ya., Novodvorskii O. A., Chaplygin V. I. Optogalvanic effect in atmospheric pressure tribes: in the book «Plasma Chemistry». — Moscow: Énergoatomizdat, 1987. P. 131 – 163 [in Russian].

4. Khalmanov A. T., Ko D. K., Lee J., et al. Study of Traces of Au and Ag Atoms by Resonant Laser Stepwise Ionization Spectroscopy / J. Korean Phys. Soc. 2004. Vol. 44. N 4. P. 843 – 848.

5. Axner O., Rubinztein-Dunlor H. Detection of trace amounts of Cr by two laser-based spectroscopic techniques: laser-enhanced ionization in flames and laser-induced fluorescence in graphite furnace / Appl. Opt. 1993. Vol. 32. N 6. P. 867 – 884. DOI: 10.1364/AO.32.000867

6. Balykin V. I. The scientific career of V. S. Letokhov (10 November 1939 – 21 March 2009) / Phys. Scr. 2012. Vol. 85. N 5. 050302. DOI: 10.1088/0031-8949/85/05/050302

7. Chekalin N. V., Khalmanov A., Marunkov A. G., et al. Determination of Co, Cr, Mn and Ni traces in fluorine containing materials for optical fibers using laser enhanced ionization techniques with flame and rod – flame atomizers / Spectrochim. Acta, Part B. 1995. Vol. 50. N 8. P. 753 – 761. DOI: 10.1016/0584-8547(94)00168-U

8. Temirov J. P., Chigarev N. V., Matveev O. I., et al. Dual-wavelength time-resolved resonance ionization imaging with cesium and mercury vapors / Appl. Spectrosc. 2004. Vol. 58. N 8. P. 1020 – 1022. DOI: 10.1366/0003702041655485

9. Nadeem A., Haq S. U. Oscillator strength measurements of the 5s5p3P1 → 5snd3D2 Rydberg transitions of cadmium / Spectrochim. Acta, Part B. 2010. Vol. 65. N 9 – 10. P. 842 – 846. DOI: 10.1016/j.sab.2010.07.004

10. Gorbatenko A. A., Revina E. I. Laser sampling / Russ. Chem. Rev. 2015. Vol. 84. N 10. P. 1051 – 1058. DOI: 10.1070/RCR4543

11. Khalmanov A. T., Khamraev Kh. S., Tursunov A. T., Tukhlibaev O. Study of traces of elements on a universal laser photoionization spectrometer / Opt. Spectrosc. 2001. Vol. 90. N 3. P. 344 – 347. DOI: 10.1134/1.1358438

12. Gorbatenko A. A., Voronina R. D., Lyubomirova O. R., Revina E. I. Laser molecular ionization spectrometry of BaO and LuO in a low-temperature flame / Vestn. Mosk. Univ. Ser. 2. Khimiya. 2007. Vol. 48. N 5. P. 357 – 360 [in Russian].

13. Khalmanov A., Ernazarov Sh., Muxamedov A., Toshkuvatova N. Investigation of laser remote identificaton of the plant state / Theor. Appl. Sci. 2020. N 12(92). P. 75 – 82. DOI: 10.15863/TAS.2020.12.92.16

14. Sherer J. J., Paul J. B., O’Keefe A., Saykally J. Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams / Chem. Rev. 1997. Vol. 97. N 1. P. 25 – 52. DOI: 10.1021/cr930048d

15. Bulatov V., Yuheng Chen, Khalmanov A., Schechter I. Absorption and scattering characterization of airborne micro-particulates by a cavity ringdown technique / Anal. Boianal. Chem. 2006. Vol. 384. N 1. P. 155 – 160. DOI: 10.1007/s00216-005-0173-8

16. Bulatov V., Khalmanov A., Schechter I. Study of the morphology of a laser-produced aerosol plume by cavity ringdown laser absorption spectroscopy / Anal. Boianal. Chem. 2003. Vol. 375. N 8. P. 1282 – 1286. DOI: 10.1007/s00216-003-1775-7

17. Khalmanov A., Boboev S., Burxonov X. Calculation of a polluting substance released into the atmosphere from asphalt- concrete plants / Theor. Appl. Sci. 2019. Vol. 76. N 8. P. 246 – 249. DOI: 10.15863/TAS.2019.08.76.34

18. Khalmanov A. T., Toshkuvatova N. Modern methods for identification of atoms, molecules, and aerosols in various objects / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 6. P. 23 – 34 [in Russian]. DOI: 10.26896/1028-6861-2023-89-6-23-34

19. Khalmanov A. T., Khamraev Kh. S. Laser atomic ionization spectrometer in flame / Industr. Lab. Mater. Diagn. 2001. Vol. 67. N 10. P 16 – 19 [in Russian].

20. Khalmanov A. T., Aymatov R., Turdikulov B. Optimization of the ventilation system and gas supply in the process of burning / Theor. Appl. Sci. 2021. Vol. 101. N 9. P. 254 – 258. DOI: 10.15863/TAS.2021.09.101.19

21. Khalmanov A. Laser spectroscopy of ultra-small concentration of atoms and aerosols in various phase states of substance / Theor. Appl. Sci. 2019. Vol. 75. N 7. P. 225 – 239. DOI: 10.15863/TAS.2019.07.75.38


Review

For citations:


Khalmanov A.T. Determination of chromium traces by atomic ionization spectroscopy in aqueous standard solutions and in gallium arsenide using the «rod – flame» atomization system. Industrial laboratory. Diagnostics of materials. 2024;90(8):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-8-5-11

Views: 252


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)