Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Identification of normalized and reconstituted milk by the methods of digital colorimetry and IR spectroscopy

https://doi.org/10.26896/1028-6861-2024-90-8-12-19

Abstract

A rapid and easy to use method for identification and differentiation of normalized and reconstituted milk using digital colorimetry and near-infrared spectroscopy is proposed. A box device with LEDs (λ = 365, 390, 850, 880 nm) built in through resistors with a light scattering angle of 20° was used. A smartphone with PhotoMetrix PRO®, ColorGrab, RGBer applications and an IR-Fourier spectrometer for a near-IR region (4000 – 10,000 cm–1) were taken to record the analytical signal. Applications TQ Analyst, The Unscrambler X, XLSTAT, were used for processing the obtained diffuse reflectance spectra and colorimetric parameters. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to identify and differentiate the analyzed milk samples. The determination of the mass fraction of fat and protein in dairy products was carried out using the partial least squares (PLS) regression algorithm. The points corresponding to normalized and reconstituted milk are located in different quadrants on PCA plots in methods of digital colorimetry and IR spectroscopy. Using PCA and HCA graphs, it appeared possible to distinguish the analyzed milk by the type and differentiate skim milk by the protein content. The possibility of determining the fat and protein content in the studied milk samples using chemometric methods of analysis has been demonstrated. The relative standard deviation of the analysis results did not exceed 0.03 for reconstituted and normalized milk, and for skim milk — 0.02.

About the Authors

V. G. Amelin
Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University; The Russian State Center for Animal Feed and Drug Standardization and Quality
Russian Federation

Vasily G. Amelin, 

87, Gorky ul., Vladimir, 600000;

5, Zvenigorodskoye shosse, Moscow, 123022.



O. E. Emelyanov
Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University
Russian Federation

Oleg E. Emelyanov, 

87, Gorky ul., Vladimir, 600000.



Zen Alabden Chalawi Shogah
Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University
Russian Federation

Zen Alabden Chalawi Shogah,

87, Gorky ul., Vladimir, 600000



References

1. ГОСТ 31450–2013. Молоко питьевое. Технические условия. — М.: Стандартинформ, 2014. — 12 с.

2. ТР ТС 033/2013. Технический регламент Таможенного союза «О безопасности молока и молочной продукции». — М.: Стандартинформ, 2013. — 103 с

3. Zhang X., Chen X., Xu Y., Yang J. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans / Nutr. Metab. 2021. Vol. 18. P. 1 – 18. DOI: 10.1186/s12986-020-00527-y

4. Ryzhikova V. O., Belyaev A. G., Baroyan N. S., et al. Technology for the production of pasteurized drinking milk / Proc. of All-Russian Scientific. Conference «Problems and Prospects of Development of Russia; a Youth Perspective on the future». 2018. Vol. 3. P. 178 – 181 [in Russian].

5. Azad T., Ahmed S. Common milk adulteration and their detection techniques / Int. J. Food Contam. 2016. Vol. 3. P. 1 – 9. DOI: 10.1186/s40550-016-0045-3

6. Zhilinkova K. B. Problems of falsification of dairy products and their impact on the milk market and the state of the dairy industry / Ékonomika Informatika. 2021. Vol. 48. N 4. P. 697 – 706 [in Russian]. DOI: 10.52575/2687-0932-2021-48-4-697-706

7. Komin A. E., Kim I. N., Borodin I. I. About common ways of falsification of dairy products / Tekhnol. Pshch. Pererab. Prom. APK — Prod. Zdor. Pit. 2021. N 2. P. 18 – 25 [in Russian]. DOI: 10.24412/2311-6447-2021-2-18-25

8. Komin A. E., Kim I. N., Borodin I. I. On the issue of adulteration of milk and dairy products / Tekhnol. Pishch. Pererab. Prom. APK — Prod. Zdor. Pit. 2020. N 4. P. 62 – 66 [in Russian]. DOI: 10.24411/2311-6447-2020-10083

9. Bykovskaya E. I., Zaikina M. A. Current issues of adulteration of dairy products and measures to prevent it / Proc. of the VII International Scientific and Practical Conference «New Conceptual Approaches to Solving the Global Problem of Ensuring Food Security in Modern Conditions». 2020. P. 90 – 94 [in Russian].

10. Dotsenko E. N., Zabolotnykh M. V., Taganova T. V. Methods of falsification of dairy products / Dostizh. Nauki Obraz. 2018. N 12(34). P. 68 – 69 [in Russian].

11. Merwan A., Amza N., Tamiru M. Review on milk and milk product safety, quality assurance and control / Int. J. Livest. Prod. 2018. Vol. 9. P. 67 – 78. DOI: 10.5897/IJLP2017.0403

12. Tola A. Global Food Fraud Trends and Their Mitigation Strategies: The Case of Some Dairy Products: A Review / Food Sci. Qual. Manag. 2018. Vol. 77. P. 30 – 42.

13. Tavares J. P. H., Medeiros M. L. S., Barbin D. F. Near-infrared techniques for fraud detection in dairy products: A review / J. Food Sci. 2022. P. 1943 – 1960. DOI: 10.1111/1750-3841.16143

14. Han D. H., Lu Ch., Liu Y., et al. Identification of reconstructed milk in raw milk using near infrared spectroscopy / Spectrosc. Spectral Anal. 2007. Vol. 27. P. 465 – 468.

15. Talibova A., Kolesnov A. Assessment of the quality and safety of food products using isotope mass spectrometry / Analitika. 2011. N 1(1). P. 44 – 48 [in Russian].

16. Xia W., Fang X., Gao Y., et al. Advances of stable isotope technology in food safety analysis and nutrient metabolism research / Food Chem. 2023. Vol. 408. 135191. DOI: 10.1016/j.foodchem.2022.135191

17. Kolesnov A. Yu., Filatova I. A., Zadorozhnyaya D. G., et al. Identification of milk and milk product from reconstituted milk powder. Isotope mass spectrometry method / Moloch. Prom. 2012. N 10. P. 60 – 63 [in Russian].

18. Bogomolov A., Dietrich S., Boldrini B., Kessler R. W. Quantitative determination of fat and total protein in milk based on visible light scatter / Food Chem. 2012. Vol. 134. P. 412 – 418. DOI: 10.1016/j.foodchem.2012.02.077

19. Galyanin V., Surkova A., Bogomolov A. Selecting optimal wavelength intervals for an optical sensor: A case study of milk fat and total protein analysis in the region 400 – 1100 nm / Sens. Actuators, B. 2015. Vol. 218. P. 97 – 104. DOI: 10.1016/j.snb.2015.03.101

20. Kucheryavskiy S., Melenteva A., Bogomolov A. Determination of fat and total protein content in milk using conventional digital imaging / Talanta. 2014. Vol. 121. P. 144 – 152. DOI: 10.1016/j.talanta.2013.12.055


Review

For citations:


Amelin V.G., Emelyanov O.E., Shogah Z.Ch. Identification of normalized and reconstituted milk by the methods of digital colorimetry and IR spectroscopy. Industrial laboratory. Diagnostics of materials. 2024;90(8):12-19. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-8-12-19

Views: 239


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)