Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diagnostics of metal structures made of ferro- and paramagnetic materials by the coercive force method

https://doi.org/10.26896/1028-6861-2024-90-8-38-46

Abstract

The coercimetry based on the Hall effect as a source of primary information is the main method of magnetic control (when classified according to the primary informative parameter) in technical inspection of potentially dangerous metal structures. Coercive force (considered as the intensity of an external magnetic field applied to a ferromagnet magnetized to saturation for complete demagnetization of the latter) is the most structure-sensitive characteristic which provides for rapid diagnostics of the material in production conditions. A linear character of change in coercive force upon application of cyclically varying stresses provides the possibility of reliable determination of the residual life of the structure. We propose a method for determining the residual life of structures made of non-ferromagnetic materials exposed to cycle mechanical loads proceeding from data on changes in the coercive force of steel witness samples (samples made of ferromagnetic material, working together with the structure under study made of non-ferromagnetic material). It is shown that the rate of change of the coercive force in the ferromagnetic witness sample correlate with the stresses in the nonferromagnetic structure. This makes it possible to determine directly the residual life of a non-ferromagnetic structure, which significantly increases the accuracy of estimating the residual life of potentially hazardous structures made of non-ferromagnetic materials. The results obtained can be used to determine the technical condition (based on the level of accumulated damage) of such structures as, for example, pedestrian bridges made of aluminum alloys.

About the Authors

Valentin A. Ermakov
National Research University «MGSU»
Russian Federation

Valentin A. Ermakov, 

26, Yaroslavskoye sh., Moscow, 129337.



Anna V. Kornilova
National Research University «MGSU»
Russian Federation

Anna V. Kornilova,

26, Yaroslavskoye sh., Moscow, 129337



References

1. Mahutov N. A., Gadenin M. M., Reznikov D. O. Integral economic risks of large-scale emergencies / All-Russian scientific and practical conf. «Russia in the 21st century in the context of global challenges: problems of risk management and ensuring the security of socio-economic and socio-political systems and natural-technogenic complexes»: coll. of works. — Moscow: RAS, MNEPU, GUU, 2022. P. 78 – 84 [in Russian].

2. Moskvichev V. V. Fundamentals of structural strength of technical systems and engineering structures. — Novosibirsk: Nauka, 2002. — 106 p. [in Russian].

3. Makhutov N. A., Gadenin M. M. Scientific information and analytical base of industrial safety / Bezopasn. Tr. Prom. 2023. N 10. P. 20 – 26 [in Russian]. DOI: 10.24000/0409-2961-2023-10-20-26

4. Makhutov N. A. Development of technical diagnostics in academic and industry laboratories / Industr. Lab. Mater. Diagn. 2023. Vol. 89. N 10. P. 52 – 54 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-52-54

5. Makhutov N. A. Development of laboratory research and diagnostics of materials / Industr. Lab. Mater. Diagn. 2022. Vol. 88. N 11. P. 5 – 13 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-I-5-13

6. Makhutov N. A., Gadenin M. M. Scientific and methodological basis for technical diagnostics of potentially hazardous industrial facilities / Bezopasn. Tr. Prom. 2021. N 6. P. 7 – 14 [in Russian]. DOI: 10.24000/0409-2961-2021-6-7-14

7. Gobov Yu. L. New possibilities for measuring coercive force / XXXIV Ural Conference «Physical methods of non-destructive testing» (Yanusov readings): coll. of works. — Yekaterinburg: Mikheev Institute of Metal Physics, UrB RAS, 2023. P. 34 – 35. [in Russian]

8. Non-destructive testing: reference. Vol. 6. — Moscow: Mashinostroenie, 2006. — 842 p. [in Russian].

9. Maksimov A. B., Erokhina I. S. Recommendations for the use of coercimetry at Kerch enterprises / Scientific and practical conferences of teachers, graduate students and employees of KGMTU «Marine technologies: problems and solutions – 2023»: coll. of works. — Kerch, 2023. P. 236 – 239 [in Russian].

10. Arefev Yu. V., Konin D. V., Bazhina E. V., Malkin A. V. Diagnostics of stress-fatigue condition of steel structures of a multi-storey building / Stroit. Mekh. Raschet Sooruzh. 2023. N 1(306). P. 45 – 55 [in Russian].

11. Wang Q., Cong G., Lyu Y., Yu W. A new Cr25Ni35Nb alloy critical failure time prediction method based on coercive force magnetic signature / Journal of Magnetism and Magnetic Materials. 2022. Vol. 549. N 168809. DOI: 10.1016/j.jmmm.2021.168809

12. Verbeno C., Zvorka J., Nowak L., Veis M. Magnetic coercivity control via buffer layer roughness in Pt/Co multilayers / Journal of Magnetism and Magnetic Materials. 2023. Vol. 585. N 171124. DOI: 10.1016/j.jmmm.2023.171124

13. Srinithi A., Tang X., Sepehri-Amin H. et al. High-coercivity SmFe12-based anisotropic sintered magnets by Cu addition / Acta Materialia. 2023. Vol. 256. N 119111. DOI: 10.1016/j.actamat.2023.119111

14. Maistrenko I. Yu., Zinnurov T. A., Maistrenko T. I. Research of the coercive force of steel structures of bridge structures / Izv. KGASU. 2022. N 2(60). P. 24 – 36 [in Russian]. DOI: 10.52409/20731523_2022_2_24

15. Lukke K. Yu., Voronova Yu. V. Coercive force is one of the important parameters of technical diagnostics of rolling stock / Mol. Nauka Sibiri. 2022. N 3(17). P. 9 – 12 [in Russian].

16. Karpuhin I. I., Kornilova A. V., Thet P. The possibilities of using the coercive force method to examine the technical condition of metallurgical equipment / IV International Scientific Conf.: coll. of works. — 2019. P. 88 – 96 [in Russian].

17. Kornilova A., Zaya K., Paing T., Dobrolyubova M. Properties of metallic materials near the edges of fatigue crack / Journal of Physics: Conference Series. 2020. Vol. 1687. N 012028. DOI: 10.1088/1742-6596/1687/1/012028

18. Novoslugina A. P., Smorodinsky Ya. G. Analysis of the topography of magnetic stray fields in ferromagnetic products / Industr. Lab. Mater. Diagn. 2021. Vol. 87. N 2. P. 33 – 37 [in Russian]. DOI: 10.26896/1028-6861-2021-87-2-33-37

19. Gobov Yu. L., Popov S. E. Restoration of the topography of surface defects of ferromagnets under a normal magnetizing field / Defektoskopiya. 2021. N 4. P. 35 – 41 [in Russian]. DOI: 10.31857/S0130308221040047

20. Gopkalo O., Bezlyudko G., Nekhotiashchiy V., et al. Damage evaluation for AISI 304 steel under cyclic loading based on coercive force measurements / International Journal of Fatigue. 2020. Vol. 139. N 105752. DOI: 10.1016/j.ijfatigue.2020.105752

21. Balina O. V. Application of the coercimetric method for the diagnosis of corrosion damage of metal structures / Inzh. Vestn. Dona. 2021. N 4(76). P. 398 – 407.

22. Kornilova A. V., Selishchev A. I., Idarmachev I. M. Application of magnetic kinds of nondestructive inspection to parts from die tool steels / Metal Science and Heat Treatment. 2016. Vol. 57. P. 632 – 637. DOI: 10.1007/s11041-016-9934-6

23. Bezlyudko G. Ya., Muzhitsky V. F., Krutikova L. A., et al. Assessment of the current state and residual life of rolling rolls based on the magnetic (coercive force) method of non-destructive testing / Spets. Nauch. Razrab. 2003. N 2. P. 31 – 33 [in Russian].

24. Silverstov I. N., Karpukhin I. I., Kornilova A. V. Determination of damage extent of backup roll by changes in coercive force and hardness of its working surface / Steel in translation. 2022. Vol. 52. N 11. P. 1086 – 1091. DOI: 10.3103/S0967091222110134

25. Mokhnatkin D. P., Zavyalova G. M. Determination of the direction of the main stresses in the elements of metal structures by the values of the coercive force / Fiz. Mekh. Mater. 2021. Vol. 47. N 2. P. 386 – 397 [in Russian]. DOI: 10.18149/mpm.4722021_16

26. Balina O. V., Nassonov V. V. Application of the coercimetric method to the evaluation of uniaxial stresses without stress relie / AIP Conference Proceedings. 2020. Vol. 2315. N 040004. DOI: 10.1063/5.0036760

27. Berdnik M. M., Berdnik A. G. Prospects for the use of coercimetry to assess the parameters of the stress-strain state of structures / Tekhnol. Mashinostr. 2019. N 1. P. 37 – 43 [in Russian].

28. Aginei R. V., Islamov R. R., Mamedova E. A. Determination of the stress-strain state of the pipeline section under pressure based on the results of the coercive force measurement / Nauka Tekhnol. Truboprov. Transp. Nefti Neftepr. 2019. Vol. 9. N 3. P. 284 – 294 [in Russian].

29. Kornilova A. V., Idarmachev I. M., Thet Paing, Chzho Zayar. Methodology for determining the life of a die tool using magnetic methods of non-destructive testing and diagnostics / Probl. Mashinostr. Nadezh. Mashin. 2014. N 5. P. 98 – 104 [in Russian].

30. Selishchev A. I., Ayupov T. Kh., Kornilova A. V., Batarin R. V. Study of changes in the coercive force of tool die steels during the manufacture and operation of forging dies / Probl. Cher. Met. Materialoved. 2018. N 1. P. 85 – 93 [in Russian].

31. Wang X., Qiang W., Shu G., et al. The ageing behavior and the correlation between hardness and coercivity of Cu-rich reactor pressure vessel model steels / Journal of Magnetism and Magnetic Materials. 2021. Vol. 527. N 167698. DOI: 10.1016/j.jmmm.2020.167698

32. Kornilova A., Kyaw Z. The influence of heating temperature on coercive force and hardness changes in carbon hypoeutectoid steels / RUDN Journal of Engineering Research. 2022. Vol. 23. N 2. P. 140 – 145. DOI: 10.22363/2312-8143-2022-23-2-140-145

33. Kornilova A. V. On the issue of the accuracy of determining the temperature of fire exposure in the wake of a fire / Bezopasn. Tr. Prom. 2022. N 5. P. 42 – 47 [in Russian].

34. Cheshko I. D. Examination of fires (objects, methods, research methods). — St. Petersburg: MVD Rossii, 1997. – 562 p. [in Russian].

35. Kornilova A. V. Microstructural monitoring as a risk management factor in the operation of metal structures / Prom. Grazhd. Stroit. 2023. N 3. P. 36 – 41 [in Russian]. DOI: 10.33622/0869-7019.2023.03.36-41

36. Martínez-de-Guerenu A., Jorge-Badiola D., Gutiérrez I. Assessing the recovery and recrystallization kinetics of cold rolled microalloyed steel through coercive field measurements / Materials Science and Engineering. 2017. Vol. 691. P. 42 – 50. DOI: 10.1016/j.msea.2017.03.033


Review

For citations:


Ermakov V.A., Kornilova A.V. Diagnostics of metal structures made of ferro- and paramagnetic materials by the coercive force method. Industrial laboratory. Diagnostics of materials. 2024;90(8):38-46. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-8-38-46

Views: 293


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)