

Properties of true stress diagrams in the areas of necking and fracture of materials under tension
https://doi.org/10.26896/1028-6861-2024-90-8-64-71
Abstract
Tensile tests of steel specimens with plotting loaded and unloaded true stress curves were carried out. It is shown that «true stress – true strain» curves in the necked region of the tensile specimen have the form of a sloping ascending straight line up to failure. It is revealed that the straightness of the curve is also observed for austenitic steel in the structure of which martensite is formed under the effect of plastic deformation, whereas «true stress S – true relative area reduction ψ» curves exhibit a violation of the straightness with upward deviation at the final stage of necking. When using Davidenkov correction, the calculated values of the true ultimate tensile stress decrease and approach the straight line. Although the unloaded values of the true stresses and true strains exceed the loaded values at the same tensile force, they fit on the same curves at different stages of the material deformation. It is possible to apply Kerber’s rule to «true stress – true relative area reduction ψ» if a sufficiently long rectilinear section of the curve is clearly identified after the true ultimate tensile stress has been reached in order to extrapolate this section to a true relative reduction of area equal to unity. Kerber rule is not applicable for «true stress – true strain» curves despite their straightness in the necked region due to the uncertainty in calculating the true strain at the unit value of true relative area reduction. At the same time the presence of a linear section in these curves during the specimen necking greatly simplifies the derivation of the entire tensile curve up to fracture.
About the Authors
Vyacheslav M. MatyuninRussian Federation
Vyacheslav M. Matyunin,
14, Krasnokazarmennaya ul., Moscow, 111250.
Artem Yu. Marchenkov
Russian Federation
Artem Yu. Marchenkov,
14, Krasnokazarmennaya ul., Moscow, 111250.
Natalya O. Tsvetkova
Russian Federation
Natalya O. Tsvetkova,
14, Krasnokazarmennaya ul., Moscow, 111250.
Daria A. Zhgut
Russian Federation
Daria A. Zhgut,
14, Krasnokazarmennaya ul., Moscow, 111250.
Anastasia A. Pankina
Russian Federation
Anastasia A. Pankina,
14, Krasnokazarmennaya ul., Moscow, 111250.
Georgy B. Sviridov
Russian Federation
Georgy B. Sviridov,
14, Krasnokazarmennaya ul., Moscow, 111250.
References
1. Bridgman P. W. Studies in Large Plastic Flow and Fracture. — New York: McGraw Hill, 1952. — 365 p.
2. Bridgman P. W. The Stress Distribution at the Neck of a Tension Specimen / Transactions of the American Society for Metals. 1944. Vol. 32. P. 553 – 574.
3. Korber F., Mitt K. W. Verfestigung und Zugfestigkeit-Ein Beitrag zur Mechanik des Zerreissversuches Plasticher Metalle / Stahl und Eisen. 1922. Vol. 3. Heft 2. Bd. 3.
4. Markovets M. P. True stress diagrams and strength calculations. — Moscow: Oborongiz, 1947. — 138 p. [in Russian].
5. Davidenkov N. N. Obtaining tensile diagrams based on determination of hardness / Zh. Tekhn. Fiz. 1943. Vol. 13. N 7 – 8. P. 389 – 393 [in Russian].
6. Davidenkov N. N., Belyaev S. E., Markovets M. P. Obtaining of the main mechanical characteristics of steel by measuring hardness / Zavod. Lab. 1945. Vol. 11. N 10. P. 964 – 973 [in Russian].
7. Davidenkov N. N., Spiridonova N. I. Stress analysis of the specimen neck during tension / Zavod. Lab. 1945. Vol. 11. N 6. P. 583 – 593 [in Russian].
8. Davidenkov N. N. About the nature of the specimen neck during tension / Zh. Tekhn. Fiz. 1955. Vol. 25. N 5. P. 877 – 880 [in Russian].
9. Matyunin V. M., Marchenkov A. Yu., Terent’ev E. V., et al. Martensite formation during indentation and tension of austenitic steel / Deform. Razrush. Mater. 2017. N 10. P. 38 – 40 [in Russian].
10. MacGregor C. W. Relations between Stress and Reduction in Area for Tensile Tests of Metals / Transactions of the Metallurgical Society of AIME. 1937. Vol. 124. P. 201 – 228.
11. Krokha V. A. Hardening of materials during cold plastic deformation. — Moscow: Mashinostroenie, 1980. — 157 p. [in Russian].
12. Zhu F., Bai P., Zhang J., et al. Measurement of True Stress-Strain Curves and Evolution of Plastic Zone of Low Carbon Steel Under Uniaxial Tension Using Digital Image Correlation / Optics and Lasers in Engineering. 2015. Vol. 65. P. 81 – 88. DOI: 10.1016/j.optlaseng.2014.06.013
13. Tardif N., Kyriakides S. Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal / International Journal of Solids Structures. 2012. Vol. 49. N 25. P. 3496 – 3506. DOI: 10.1016/j.ijsolstr.2012.01.011
14. Kim J.-H., Serpantié A., Barlat F., et al. Characterization of the Post-necking Strain Hardening Behavior Using the Virtual Fields Method / International Journal of Solids Structures. 2013. Vol. 50. P. 3829 – 3842. DOI: 10.1016/j.ijsolstr.2013.07.018
15. Iadicola M. A. Validation of Uniaxial Data Beyond Uniform Elongation / Proceedings of 8th the International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes / AIP Conference Proceedings. 2011. Vol. 1383. P. 742 – 749. DOI: 10.1063/1.3623680
16. Paul S. K., Roy S., Sivaprasad S., et al. Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique / Journal of Materials Engineering and Performance. 2017. Vol. 26. N 10. P. 4953 – 4963. DOI: 10.1007/s11665-017-2919-9
17. Ghadbeigi H., Pinna C., Celotto S., Yates J. R. Local Plastic Strain Evolution in a High Strength Dual-Phase Steel / Materials Science Engineering A. 2010. Vol. 527. N 18. P. 5026 – 5032. DOI: 10.1016/j.msea.2010.04.052
18. Ghadbeigi H., Pinna C., Celotto S. Failure Mechanisms in DP600 Steel: Initiation Evolution and Fracture / Materials Science Engineering A. 2013. Vol. 588. P. 420 – 431. DOI: 10.1016/j.msea.2013.09.048
19. Majzoobi G., Farzad F., Mohammad P., Hardy S. A new approach for the correction of stress-strain curves after necking in metals / The Journal of Strain Analysis for Engineering Design. Vol. 50. N 2. P. 125 – 137. DOI: 10.1177/0309324714555384
20. Bulychev S. I., Kravchenkov A. N. New similarity parameters in transition from indentation diagrams to tensile diagrams / Industr. Lab. Mater. Diagn. 2014. Vol. 80. N 2. P. 49 – 54 [in Russian].
21. Vodop’aynov V. I., Kondrat’ev O. V., Travin V. V. Construction of the True Strain Diagram on the Stage of Neck Formation / Industr. Lab. Mater. Diagn. 2007. N 7. P. 53 – 58 [in Russian].
22. Kamaya M., Kawakubo M. A Procedure for Determining the True Stress-Strain Curve Over a Large Range of Strains Using Digital Image Correlation and Finite Element Analysis / Mechanics of Materials. 2011. Vol. 43. N 5. P. 243 – 253. DOI: 10.1016/j.mechmat.2011.02.007
23. Joun M. S., Eom J. G., Lee M. C. A New Method for Acquiring True Stress-Strain Curves Over a Large Range of Strains Using a Tensile Test and Finite Element Method / Mechanics of Materials. 2008. Vol. 40. N 7. P. 586 – 593. DOI: 10.1016/j.mechmat.2007.11.006
24. Nasser A., Yadav A., Pathak P., Altan T. Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests / Journal of Materials Processing Technology. 2010. Vol. 210. N 3. P. 429 – 436. DOI: 10.1016/j.jmatprotec.2009.10.003
25. Sancho A., Cox M. J., Cartwright T., et al. An Experimental Methodology to Characterize Post-Necking Behaviour and Quantify Ductile Damage Accumulation in Isotropic Materials / International Journal of Solids Structures. 2019. Vol. 176 – 177. DOI: 10.1016/j.ijsolstr.2019.06.01
26. Matyunin V. M., Marchenkov A. Yu., Volkov P. V., et al. Conversion of Instrumented Indentation Diagrams with Ball Indenter into Stress-Strain Curves for Metallic Structural Materials / Industr. Lab. Mater. Diagn. 2022. Vol. 82. N 2. P. 54 – 63 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-54-63
Review
For citations:
Matyunin V.M., Marchenkov A.Yu., Tsvetkova N.O., Zhgut D.A., Pankina A.A., Sviridov G.B. Properties of true stress diagrams in the areas of necking and fracture of materials under tension. Industrial laboratory. Diagnostics of materials. 2024;90(8):64-71. (In Russ.) https://doi.org/10.26896/1028-6861-2024-90-8-64-71