Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of the metal oxide gas sensor with increased selectivity and energy efficiency

https://doi.org/10.26896/1028-6861-2025-91-3-35-41

Abstract

The development of gas analytical devices based on semiconductor metal oxide sensors is associated with the growth of their sensitivity, selectivity and energy efficiency. This paper presents the results of a study of a new metal oxide gas sensor. Improvement of the sensor characteristics was achieved through miniaturization of the dielectric substrate and temperature modulation. The electrical power of the sensor manufactured using the developed dielectric substrate based on aluminum oxide ceramics (dimensions 1.50 × 1.50 × 0.63 mm) was about 250 mW at an operating temperature of 723 K. To produce the microheater, we used a platinum resistive paste consisting of platinum-coated micron-sized particles of aluminum oxide and glass. The resistive film with a sheet resistance of about 4 Ω was produced by screen printing, and the gas-sensitive material of the sensor was produced by the sol-gel method. To process the training subsamples of the experimental data using the principal component method, we selected regions on the plane of the principal components corresponding to conventionally single-component gas systems. It was shown that qualitative and quantitative analysis of conventionally single-component gas systems is possible using a single metal oxide sensor based on tin dioxide with gold nanoparticles in the temperature modulation mode. The obtained results can be used in the development of new models of universal and compact gas analytical devices with increased energy efficiency and selectivity.

About the Authors

A. V. Shaposhnik
Emperor Peter the Great Voronezh State Agrarian University
Russian Federation

Alexey V. Shaposhnik

1, ul. Michurina, Voronezh, 394087



P. V. Moskalev
Moscow State University of Technology «STANKIN»
Russian Federation

Pavel V. Moskalev

1, Vadkovsky per., Moscow, 127055



O. V. Kul
LLC «C-Component»
Russian Federation

Oleg V. Kul

of. 8-08, 17, ul. Tushinskaya, Moscow, 125362



A. A. Zvyagin
Emperor Peter the Great Voronezh State Agrarian University
Russian Federation

Alexey A. Zvyagin

1, ul. Michurina, Voronezh, 394087



A. A. Vasiliev
State University «Dubna»
Russian Federation

Alexey A. Vasiliev

19, ul. Universitetskaya, Dubna, Moscow obl., 141980



References

1. Yamazoe N. New approaches for improving semiconductor gas sensors / Sensors Actuators B: Chem. 1991. Vol. 5. P. 7 – 19. DOI: 10.1016/0925-4005(91)80213-4

2. Weimar U., Göpel W. Chemical imaging: II. Trends in practical multiparameter sensor systems / Sensors Actuators B: Chem. 1998. Vol. 52. P. 143 – 161. DOI: 10.1016/S0925-4005(98)00268-8

3. Comini E., Baratto C., Concina I., et al. Metal oxide nanoscience and nanotechnology for chemical sensors / Sensors Actuators B: Chem. 2013. Vol. 179. P. 3 – 20. DOI: 10.1016/j.snb.2012.10.027

4. Yamazoe N. Toward innovations of gas sensor technology / Sensors Actuators B: Chem. 2005. Vol. 108. P. 2 – 14. DOI: 10.1016/j.snb.2004.12.075

5. Kim S. H., Yun K. S. Room-temperature hydrogen gas sensor composed of palladium thin film deposited on NiCo2O4 nanoneedle forest / Sensors Actuators B: Chem. 2023. Vol. 376. P. 132958. DOI: 10.1016/j.snb.2022.132958

6. Wu C.-M. S., Motora K. G., Chen G. Y., et al. Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature / Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. Vol. 289. P. 116285. DOI: 10.1016/j.mseb.2023.116285

7. Lee J., Kim S., Yoo H., Lee W. Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature / Sensors Actuators B: Chem. 2022. Vol. 368. P. 132236. DOI: 10.1016/j.snb.2022.132236

8. Maji B., Barik B., Sahoo S., et al. Shape selective comprehensive gas sensing study of different morphological manganese – cobalt oxide based nanocomposite as potential room temperature hydrogen gas sensor / Sensors Actuators B: Chem. 2023. Vol. 380. P. 133348. DOI: 10.1016/j.snb.2023.133348

9. Kim S. H., Yun K. S. Room-temperature hydrogen gas sensor composed of palladium thin film deposited on NiCo2O4 nanoneedle forest / Sensors Actuators B: Chem. 2023. Vol. 376. P. 132958. DOI: 10.1016/j.snb.2022.132958

10. Li Y., Song X., Li L., et al. Low concentration CO gas sensor constructed from MoS2 nanosheets dispersed SnO2 nanoparticles at room temperature under UV light / Ceram. Int. 2023. Vol. 49. P. 10249 – 10254. DOI: 10.1016/j.ceramint.2022.11.204

11. Sayago I., Santos J., Sánchez-Vicente C. The effect of rare earths on the response of photo UV-activate ZnO gas sensors / Sensors. 2022. Vol. 22. P. 8150. DOI: 10.3390/s22218150

12. Zhang L., Zhang H., Chen C., et al. Preparation and mechanism of high-performance ammonia sensor based on tungsten oxide and zinc oxide composite at room temperature / Curr. Appl. Phys. 2023. Vol. 45. P. 30 – 36. DOI: 10.1016/j.cap.2022.10.012

13. Nadekar B., Khollam Y., Shaikh S., et al. Plasma-polymerized thiophene-reduced graphene oxide composite film sensor for ammonia/amine detection at room temperature / Chemosensors. 2023. Vol. 11. P. 42. DOI: 10.3390/chemosensors11010042

14. Li S., Liu A., Yang Z., et al. Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3 / Sensors Actuators B: Chem. 2019. Vol. 299. P. 126970. DOI: 10.1016/j.snb.2019.126970

15. Shafiei M., Hoshyargar F., Lipton-Duffin J., et al. Conversion of n-type CuTCNQ into p-type nitrogen-doped CuO and the implication for room-temperature gas sensing / J. Phys. Chem. C. 2015. Vol. 119. P. 22208 – 22216. DOI: 10.1021/acs.jpcc.5b06894

16. Kim D. W., Park K. H., Lee S. H., et al. Plasmon expedited response time and enhanced response in gold nanoparticles-decorated zinc oxide nanowire-based nitrogen dioxide gas sensor at room temperature / J. Colloid Interface Sci. 2021. Vol. 582. P. 658 – 668. DOI: 10.1016/j.jcis.2020.08.082

17. Alouani M., Casanova-Cháfer J., Güell F., et al. ZnO-Loaded graphene for NO2 gas sensing / Sensors. 2023. Vol. 23. P. 6055. DOI: 10.3390/s23136055

18. Zhang C., Wang J., Olivier M., Debliquy M. Room temperature nitrogen dioxide sensors based on N719-dye sensitized amorphous zinc oxide sensors performed under visible-light illumination / Sensors Actuators B: Chem. 2015. Vol. 209. P. 69 – 77. DOI: 10.1016/j.snb.2014.11.090

19. Yang Z., Jiang L., Wang J., et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application / Sensors Actuators B: Chem. 2021. Vol. 326. P. 128828. DOI: 10.1016/j.snb.2020.128828

20. Sen S., Bhandarkar V., Muthe K., et al. Highly sensitive hydrogen sulphide sensors operable at room temperature / Sensors Actuators B: Chem. 2006. Vol. 115. P. 270 – 275. DOI: 10.1016/j.snb.2005.09.013

21. Shewale P. S., Yun K. S. Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor / J. Alloys Compd. 2020. Vol. 837. P. 155527. DOI: 10.1016/j.jallcom.2020.155527

22. Zhang C., Zhang S., Yang Y., et al. Highly sensitive H2S sensors based on metal-organic framework driven γ-Fe2O3 on reduced graphene oxide composites at room temperature / Sensors Actuators B: Chem. 2020. Vol. 325. P. 128804. DOI: 10.1016/j.snb.2020.128804

23. Zvyagin A. A., Nenakhov D. V., Kotov V. V., et al. Selective determination of formaldehyde in the air using piezoresonant sensors with coatings of natural high-molecular compounds / Industr. Lab. Mare. Diagn. 2010. Vol. 76. No. 7. P. 9 – 12 [in Russian].

24. Filatova D. G., Bogdanova A. P., Krivetskiy V. V., et al. Quantification of Si dopant in β-Ga2O3-based semiconductor gas sensors by total reflection X-ray fluorescence spectroscopy (TXRF) / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 8. P. 5 – 9 [in Russian]. DOI: 10.26896/1028-6861-2022-88-8-5-9

25. Mintcheva N., Srinivasan P., Rayappan J., et al. Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles / Appl. Surf. Sci. 2020. Vol. 507. P. 145169. DOI: 10.1016/j.apsusc.2019.145169

26. Vasiliev A. A., Pavelko R. G., Gogish-Klushin S. Y., et al. Alumina MEMS platform for impulse semiconductor and IR optic gas sensors / Sensors Actuators B: Chem. 2008. Vol. 132. P. 216 – 223. DOI: 10.1016/j.snb.2008.01.043

27. Vasiliev A. A., Pisliakov A. V., Sokolov A. V., et al. Non-silicon MEMS platforms for gas sensors / Sensors Actuators B: Chem. 2016. Vol. 224. P. 700 – 713. DOI: 10.1016/j.snb.2015.10.066

28. Vasiliev A., Shaposhnik A., Kul O. The role of convection and size effects in sensor microhotplate heat exchange / Proceedings. 2024. Vol. 97. P. 150. DOI: 10.3390/proceedings2024097150

29. Shaposhnik A., Moskalev P., Sizask E., et al. Selective detection of hydrogen sulfide and methane by a single MOX-sensor / Sensors. 2019. Vol. 19. P. 1135. DOI: 10.3390/s19051135

30. Shaposhnik A. V., Shaposhnik D. A., Turishchev S. Y., et al. Gas sensing properties of individual SnO2 nanowires and SnO2 sol-gel nanocomposites / Beilstein J. Nanotechnol. 2019. Vol. 10. P. 1380 – 1390. DOI: 10.3762/bjnano.10.136

31. Shaposhnik A. V., Moskalev P. V., Chegereva K. L., et al. Selective gas detection of H2 and CO by a single MOX-sensor / Sensors Actuators B: Chem. 2021. Vol. 334. P. 129376. DOI: 10.1016/j.snb.2020.129376

32. Kim M. G. Multivariate outliers and decompositions of Mahalanobis distance / Commun. Stat. Theory Methods. 2000. Vol. 29. P. 1511 – 1526. DOI: 10.1080/03610920008832559


Review

For citations:


Shaposhnik A.V., Moskalev P.V., Kul O.V., Zvyagin A.A., Vasiliev A.A. Research of the metal oxide gas sensor with increased selectivity and energy efficiency. Industrial laboratory. Diagnostics of materials. 2025;91(3):35-41. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-3-35-41

Views: 300


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)