

Stady of the structure, hardness and magnetic characteristics of austenitic steel 04Kh17N8T with varying surface hardening modes
https://doi.org/10.26896/1028-6861-2025-91-3-42-47
Abstract
Surface plastic deformation is widely used in various branches of mechanical engineering to improve the operational properties of materials. The paper presents the results of the study of the influence of surface plastic deformation modes on the structure, microhardness and magnetic characteristics of austenitic steel 04Kh17N8T. The experiments included changing the parameter of surface plastic deformation — normal load on the indenter. Using microstructural analysis, including optical and electron microscopy, changes in the crystalline structure of the material after deformation were analyzed. The magnetic characteristics of the samples were determined using a Barkhausen noise analyzer. It was found that the hardness of the samples in the cross section is almost the same at indenter load of 250 N and more. In addition, there is a correlation between deformation modes and hardness. It is shown that changing the modes of surface plastic deformation has a significant effect on the structure and magnetic characteristics of 04Kh17N8T steel. Friction treatment leads to the formation of a gradient structure with a depth of up to 500 μm, and at a depth of up to 25 μm a highly deformed dispersed structure is formed. Due to the increase in the normal load on the indenter during friction machining, the content of defects in the material increases, which affects its magnetic properties. The obtained results can be used in the improvement of surface plastic deformation technologies and optimization of steel processing processes to achieve the required level of performance characteristics and increase the service life of parts and structural elements.
About the Authors
K. D. KryuchevaRussian Federation
Kristina D. Kryucheva
34, ul. Komsomolskaya, Yekaterinburg, 620049
E. A. Putilova
Russian Federation
Evgeniya A. Putilova
34, ul. Komsomolskaya, Yekaterinburg, 620049
S. M. Zadvorkin
Russian Federation
Sergey M. Zadvorkin
34, ul. Komsomolskaya, Yekaterinburg, 620049
L. S. Goruleva
Russian Federation
Larisa S. Goruleva
34, ul. Komsomolskaya, Yekaterinburg, 620049
R. A. Savrai
Russian Federation
Roman A. Savrai
34, ul. Komsomolskaya, Yekaterinburg, 620049
References
1. Lo K., Shek C., Lai J. Recent developments in stainless steels / Materials Science and Engineering. 2009. Vol. 65. No. 4. P. 39 – 104. DOI: 10.1016/j.mser.2009.03.001
2. Eskandari M., Kermanpur A., Najafizadeh A. Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment / Metallurgical and Materials Transactions A. 2009. Vol. 40. No. 9. P. 2241 – 2249. DOI: 10.1007/S11661-009-9916-z
3. Pradhan K., Matawale C., Murarka S. Analysis of erosion-corrosion resistance and Various Application in domestic and Industrial field of Stainless Steel Grade 304 / Int. J. Res. 2015. Vol. 2. Issue 4. P. 807 – 811.
4. Skorynina P. A., Makarov A. V., Berezovskaya V. V., et al. Effect of nanostructuring frictional treatment on micromechanical and corrosion properties of stable austenitic chromium-nickel steel / Frontier Mater. Technol. 2021. No. 4. P. 80 – 88. DOI: 10.18323/2782-4039-2021-4-80-88
5. Slavov S., Dimitrov D., Konsulova-Bakalova M., et al. Impact of Ball Burnished Regular Reliefs on Fatigue Life of AISI 304 and 316L Austenitic Stainless Steels / Materials. 2021. Vol. 14. P. 25 – 29. DOI: 10/3390/ma14102529
6. Lezhnin N. V., Makarov A. V., Luchko S. N. The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel / Lett. Mater. 2019. Vol. 3. Issue 35. P. 9. DOI: 10.22226/2410-3535-2019-3-310-315
7. Kuznetsov V. P., Kosareva A. V. Increase of Wear and Heat Resistance of the AISI 304 Steel Surface Layer by Multi-Pass Nanostructuring Burnishing / J. Mater. Eng. 2023. Vol. 1. Issue 2. P. 55 – 61. DOI: 10.61552/jme.2023.02.001
8. Torres M. A. S., Voorwald H. J. C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel / Int. J. Fatigue. 2002. Vol. 24. Issue 8. P. 877 – 886. DOI: 10.1016/S0142-1123(01)00205-5
9. Makarov A. V., Korshunov L. G. Metallophysical foundations of nanostructuring frictional treatment of steels / Physics of Metals and Metallography. 2019. Vol. 120. No. 3. P. 303 – 311 [in Russian]. DOI: 10.1134/S0015323018120124
10. Kermouche G., Pacquaut G., Langlade C., et al. Investigation of mechanically attrited structures induced by repeated impacts on an AISI1045 steel / Comptes Rendus Mécanique. 2011. Vol. 339. Issue 7 – 8. P. 552 – 562. DOI: 10.1016/j.crme.2011.05.012
11. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment / Mater. Sci. Eng. 2004. Vol. 375 – 377. P. 38 – 45. DOI: 10.1016/j.msea.2003.10.261
12. Ulutan M., Celik O., Gasan H., et al. Effect of Different Surface Treatment Methods on the Friction and Wear Behavior of AISI 4140 Steel / J. Mater. Sci. Technol. 2010. Vol. 26. Issue 3. P. 251 – 257. DOI: 10.1016/S1005-0302(10)60042-4
13. Chen X., Gussev M., Balonis M., et al. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steels / Mater. Design. 2021. Vol. 203. P. 109614. DOI: 10.1016/j.matdes.2021.109614
14. Korneev A. E., Korneev A. A., Gugenko A. S., et al. Study of the effect of the deformation martensite on the corrosion resistance of NPP equipment and pipelines made of austenitic steels / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 3. P. 29 – 34 [in Russian]. DOI: 10.26896/1028-6861-2021-87-3-29-34
15. Makarov A. V. Nanostructured friction treatment of carbon and low-alloy steels. — Moscow: MISIS, 2011 [in Russian].
16. Savrai R. A., Osintseva A. L. Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests / Mater. Sci. Eng. 2021. Vol. 802. P. 140679. DOI: 10.1016/j.msea.2020.140679
17. Savrai R. A., Kolobylin Yu. M., Volkova E. G. Micromechanical characteristics of the surface layer of metastable austenitic steel after frictional treatment / Physics of Metals and Metallography. 2021. Vol. 122. No. 8. P. 800 – 806 [in Russian]. DOI: 10.31857/S001532302108012X
18. Jamalian M., Field D. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading / J. Mater. Sci. Technol. 2020. Issue 36. P. 45 – 49. DOI: 10.1016/j.jmst.2019.06.013
19. Dorofeev A. L. Eddy currents. — Moscow: Énergiya, 1977. — 72 p. [in Russian].
20. Wang P., Han Z. Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions / J. Mater. Sci. Technol. 2018. Issue 34. P. 1835 – 1842. DOI: 10.1016/j.jmst.2018.01.013
21. Schwartz A., Kumar M., Adams B., et al. Electron Backscatter Diffraction in Materials Science. — Springer, 2009. DOI: 10.2298/PAC1201001S
22. Samih Y., Beausir B., Bolle B., et al. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT) / Materials Characterization. 2013. Issue 83. P. 129 – 138. DOI: 10.1016/j.matchar.2013.06.006
23. Heilmann I., Clark W., Rigney D. Orientation determination of subsurface cells generated by sliding / Acta Metallurgica. 1983. Vol. 31. No. 8. P. 1293 – 1305. DOI: 10.1016/0001-6160(83)90191-8
24. Panin V. E., Vityaz P. A. Physical Mesomechanics of Fracture and Wear on the Friction Surface of Solids / Phys. Mesomech. 2002. Vol. 5. No. 1. P. 5 – 13 [in Russian].
25. Jordan Moering, Xiaolong Ma, Guizhen Chen, et al. The role of shear strain on texture and microstructural gradients in low carbon steel processed by Surface Mechanical Attrition Treatment / Scripta Materialia. 2015. Issue 108. P. 100 – 103. DOI: 10.1016/j.scriptamat.2015.06.027
26. Belomyttsev M. Yu., Kuzko E. I. Magnetometric determination of the percentage ratio of paramagnetic-ferromagnetic phase / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 1. P. 34 – 41 [in Russian]. DOI: 10.26896/1028-6861-2024-90-1-34-41
27. Belomyttsev M. Yu., Kuzko E. I., Prokofiev P. A. Magnetometric method in analysis of ferritic-martensitic steels / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 11. P. 41 – 46 [in Russian]. DOI: 10.26896/1028-6861-2017-83-11-41-46
Review
For citations:
Kryucheva K.D., Putilova E.A., Zadvorkin S.M., Goruleva L.S., Savrai R.A. Stady of the structure, hardness and magnetic characteristics of austenitic steel 04Kh17N8T with varying surface hardening modes. Industrial laboratory. Diagnostics of materials. 2025;91(3):42-47. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-3-42-47