Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of hydrogen embrittlement on the Wierzbicki – Xue failure strain criterion

https://doi.org/10.26896/1028-6861-2025-91-3-60-69

Abstract

The influence of hydrogen embrittlement on Wierzbicki and Xue (W-X) model parameters is studied. This model has 4 parameters (D, C, δ*, and e 0/f) which have been obtained by tensile test on smooth specimens, tensile notch specimens, single notch tensile specimens (SENT) and pure shear specimens. Hydrogen embrittlement has been obtained by electrolytic method. For the steel API 5L X60, the relative values decrease for the parameters D and C of the W-X plasticity model is in the range after HE. The δ* parameter increases after HE but its influence is limited because the values of the Lode angle are low. For the studied pipe exhibiting a crack-like defect and submitted to internal pressure, soil reaction and lateral seismic displacement Δ, the local failure strain indicates that for high values of Δ, the effect of HE is hidden by the stress triaxiality effect. Improvement of the W-X plasticity model is necessary to consider the thickness and the geometry effects. This can be done by introducing a constrain parameter. Application of the (W-X) model has been done to get the local critical resistance used to predict fracture by the Volumetric Method (VM). An example is given for the case of an embedded pipe submitted to service pressure and lateral seismic displacement.

About the Authors

L. Alric
LEM3-ENIM — University of Lorraine
Russian Federation

Lucas Alric

Metz, 57070



G. Pluvinage
LEM3-ENIM — University of Lorraine
France

Guy Pluvinage

Metz, 57070



J. Capelle
LEM3-ENIM — University of Lorraine
Russian Federation

Julien Capelle

Metz, 57070



References

1. Johnson W. H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids / Proc. Roy. Soc. Lond. 1875. Vol. 23. P. 168 – 179.

2. Pluvinage G. Mechanical properties of a wide range of pipe steels under influence of pure hydrogen or hydrogen blended with natural gas / Int. J. Press. Vessels Piping. 2021. Vol. 190. April. 104293.

3. Wu X., Zhang H., Yang M., et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels / Int. J. Hydrogen. Energy. 2022. Vol. 47. P. 807.

4. Mohtadi-Bonab M. A., Masoumi M. Different aspects of hydrogen diffusion behavior in pipeline steel / J. Mater. Res. Technol. 2023. Vol. 24. P. 4762 – 4783.

5. Oriani R. A. Whitney award lecture-1987: Hydrogen — the versatile embrittlement / Corrosion. 1987. Vol. 43. No. 7. P. 390.

6. Sofronis P., Liang Y., Aravas N. Hydrogen induced shear localisation of the plastic flow in metals and alloys / Eur. J. Mech. A. Solids. 2001. Vol. 20. P. 857 – 872.

7. Rice J. R., Tracey D. M. On the ductile. in triaxial stress fields / J. Mech. Phys. Solids. 1969. Vol. 26. P. 163 – 186.

8. McClintock F. A. A Criterion for ductile fracture by the growth of holes / J. Appl. Mech. 1968. Vol. 35. P. 363.

9. Wierzbicki T., Xue L. Ductile fracture initiation and propagation modelling using damage plasticity theory / Eng. Fracture Mech. 2008. Vol. 75. P. 3276 – 3293.

10. Yuanli Bai, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence / Int. J. Plasticity. 2008. Vol. 24. P. 1071 – 1096.

11. Zengli Peng, Haisheng Zhao, Xin Li, et al. Ductile fracture of X80 pipeline steel over a wide range of stress triaxialities and Lode angles / Eng. Fracture Mech. 2023. Vol. 289. 109470.

12. Simiao Yu, Lixun Cai, Di Yao, Chen Bao. Critical ductile fracture criterion based on first principal stress and stress triaxiality / Theor. Appl. Fracture Mech. 2020. Vol. 10. July.

13. Peihua Han, Peng Cheng, Shuai Yuan, Yong Bai. Characterization of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach / Thin-Walled Structures. 2021. Vol. 164. 107254.

14. Bianchetti C., Pino Munoz D., Leble B., Ouchard P.-O. B. Ductile failure prediction of pipe-ring notched AISI 316L using uncoupled ductile failure criteria / Int. J. Pressure Vessels Piping. 2021. Vol. 191. 104333.

15. Yajun Zhang, Yuqing Liu, Fei Yang. Ductile fracture modelling of steel plates under tensile and shear dominated states / J. Construct. Steel Res. 2022. Vol. 197. 107469.

16. Zhao Zhang, Yanqing Wu, Fenglei Huang. Extension of a shear-controlled ductile fracture criterion by considering the necking coalescence of voids / Int. J. Solids Struct. 2022. Vol. 11132. P. 236 – 237.

17. Ahonsu Komla J. P., Pluvinage G., Capelle J. A simple strain-based method to compute the probability of failure of a pipe submitted to seismic displacement / J. Fail. Anal. Prevention. 2022. Vol. 22. P. 1637 – 1645.

18. Oh C. K., Kim Y. J., Baek J. H., et al. A micro-mechanical model of ductile fracture for API X65 steels and application to pre-strain effects on deformation and fracture / Int. J. Mech. Sci. 2007. Vol. 143. P. 119 – 133.

19. Xue Yang, Yazhou Guo. A new ductile failure criterion with stress triaxiality and Lode dependence / Eng. Fracture Mech. 2023. Vol. 5. June.

20. Pluvinage G. Notch effects in fatigue and fracture. — Kluwer Publishing, 2001. — 233 p.

21. Capelle J., Dmytrakh I., and Pluvinage G. Hydrogen effect on local fracture emanating from notches in pipeline with steel API X52 / Probl. Strength. 2009. No. 5. P. 401.

22. Bridgman P. W. Studies in large plastic flow and fracture. — McGraw-Hill, 1952.

23. Wells D., Coppersmith K. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement / Bull. Seismol. Soc. Am. 1994. Vol. 84. No. 4. P. 974 – 1002.

24. Irwine W. H., Quirk J. F. A strain concentration approach to fracture mechanics / Practical application of fracture mechanics to pressure vessel technology. — London, 1971. C2. P. 76 – 84.

25. Guillemot L. F. Brittle fracture on welded materials / Second commonwealth Welding, Conference. — London, 1965. C7. P. 353 – 382.

26. Griffith J. R., Owen D. R. J. The applicability of slip-line field theory to contained elastic-plastic flow around a notch / J. Mech. Phys. Solids. 1972. Vol. 19. P. 419.

27. Osborne D. E., Embury J. D. The influence of warm rolling on the fracture toughness of bainitic steels / Metallurg. Mater. Trans. B. 1973. Vol. 4. Issue 9. P. 2051 – 2061.

28. Barnby J. T., Shi Y. W., Nadkarni A. S. On the void growth in C-Mn structural steel during plastic deformation / Int. J. Fracture. 1984. Vol. 25. P. 273 – 283.

29. Gutenberg B., Richter C. F. Magnitude and Energy of Earthquakes / Annali di Geofisica. 1956. Vol. 9. P. 1 – 15.


Review

For citations:


Alric L., Pluvinage G., Capelle J. Influence of hydrogen embrittlement on the Wierzbicki – Xue failure strain criterion. Industrial laboratory. Diagnostics of materials. 2025;91(3):60-69. https://doi.org/10.26896/1028-6861-2025-91-3-60-69

Views: 266


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)