Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of residual methyl methacrylate in aqueous extracts of polymethyl methacrylate by micellar electrokinetic chromatography

https://doi.org/10.26896/1028-6861-2025-91-4-22-27

Abstract

The development of an accessible procedure for determining methyl methacrylate (MMA) in aqueous media is of great interest, since monitoring the content of the residual monomer released from the denture material — polymethyl methacrylate (PMMA) — into the oral cavity in neccesary prostheses. The proposed technique of electrophoretic determination of MMA is characterized by high precision, short analysis time, and minimal sample preparation. Optimal analysis conditions have been found: the concentration of surfactant (sodium dodecyl sulfate) — 80 mmol/liter, capillary voltage — 25 kV, temperature — 25°C. The developed procedure was tested in the analysis of real samples from dental practice: base materials intended for the fabrication and relocation of orthopedic constructions. Monitoring of MMA releasing from PMMA samples allowed to evaluate the residual monomer content in deionized water and artificial saliva: after 48 hours, MMA concentration in model solution is 35% lower than in water. With direct spectrophotometric detection (λ = 215 nm), the limit of detection of MMA in deionized water and artificial saliva is 0.015 and 0.020 μg/ml, respectively.

About the Authors

N. V. Mikhailova
Mendeleev University of Chemical Technology
Russian Federation

Natalia V. Mikhailova,

9, Miusskaya pl., Moscow, 125047.



S. V. Stakhanova
Mendeleev University of Chemical Technology
Russian Federation

Svetlana V. Stakhanova,  

9, Miusskaya pl., Moscow, 125047.



Yu. V. Ermolenko
Mendeleev University of Chemical Technology
Russian Federation

Yulia V. Ermolenko,

9, Miusskaya pl., Moscow, 125047.



U. L. Kobets
Mendeleev University of Chemical Technology
Russian Federation

Ulyana L. Kobets,

9, Miusskaya pl., Moscow, 125047.



E. G. Vinokurov,
Mendeleev University of Chemical Technology
Russian Federation

Evgeny G. Vinokurov, 

9, Miusskaya pl., Moscow, 125047.



I. N. Semenova
Mendeleev University of Chemical Technology
Russian Federation

Irina N. Semenova,

9, Miusskaya pl., Moscow, 125047.



Ya. N. Kharakh
Russian University of Medicine
Russian Federation

Yaser N. Kharakh,

4, Dolgorukovskaya ul., Moscow, 127006.



References

1. Nascimento G. G., Alves-Costa S., Romandini M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study / J. Periodontal Res. 2024. No. 5. P. 823 – 867. DOI: 10.1111/jre.13337

2. Goroshko N. V., Emelyanova E. K., Patsala S. V. Healthy Life Expectancy in Russia in the Context of the Global Aging Problem / Vestn. PNRPU. Sots.-Ékon. Nauki. 2021. No. 4. P. 78 – 99 [in Russian]. DOI: 10.15593/2224-9354/2021.4.5

3. Frolova E. V., Turusheva A. V., Trezubov V. N., et al. Healthy Aging and Oral Health Status / Russian Family Doctor. 2023. No. 1. P. 5 – 14 [in Russian]. DOI: 10.17816/RFD312945

4. Roberto L. L., Crespo T. S., Monteiro-Junior R. S., et al. Sociodemographic determinants of edentulism in the elderly population: A systematic review and meta-analysis / Gerodontology. 2019. No. 4. P. 325 – 337. DOI: 10.1111/ger.12430

5. Grachev D. I., Martynenko A. V., Perekhodov S. N., et al. New Assessment Model of Financing Treatment of Patients with Complete Tooth Loss / Emerging Sci. J. 2024. No. 5. P. 1898 – 1916. DOI: 10.28991/ESJ-2024-08-05-014

6. Zafar M. S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update / Polymers. 2020. No. 10. 2299. DOI: 10.3390/polym12102299

7. Burgers R., Schubert A., Muller J., et al. Cytotoxicity of 3D-printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts / Clin. Exp. Dental Res. 2022. Vol. 8. No. 3. P. 650 – 657. DOI: 10.1002/cre2.592

8. Leggat P. A., Kedjarune U. Toxicity of methyl methacrylate in dentistry / Int. Dent. J. 2003. Vol. 53. No. 3. P. 126 – 131. DOI: 10.1111/j.1875-595x.2003.tb00736.x

9. Chizhov Yu. V., Maskadynov L. E., Rubailo A. I., et al. Studying of monomers of basic acrylic plastic by spectrophotometric method / Institute of Dentistry. 2018. No. 1. P. 108 – 109 [in Russian].

10. Keul C., Seidl J., Güth J. F., et al. Impact of fabrication procedures on residual monomer elution of conventional polymethyl methacrylate (PMMA) — a measurement approach by UV/Vis spectrophotometry / Clin. Oral Invest. 2020. Vol. 24. No. 12. P. 4519 – 4530. DOI: 10.1007/s00784-020-03317-1

11. Urban V. M., Cass Q. B., Oliveira R. V., et al. Development and application of methods for determination of residual monomer in dental acrylic resins using high performance liquid chromatography / Biomed. Chromatogr. 2006. Vol. 20. No. 4. P. 369 – 376. DOI: 10.1002/bmc.575

12. Iça R. B., Öztürk F., Ates B., et al. Level of residual monomer released from orthodontic acrylic materials / Angle Orthod. 2014. Vol. 84. No. 5. P. 862 – 867. DOI: 10.2319/060713-435.1

13. Tuna E. B., Rohlig B. G., Sancakli E., et al. Influence of acrylic resin polymerization methods on residual monomer release / J. Contemp. Dent. Pract. 2013. Vol. 14. No. 2. P. 259 – 264. DOI: 10.5005/jp-journals-10024-1310

14. Gordon D. A., Estrina G. A., Bolshakov A. I., et al. Methyl acrylate and methyl methacrylate oligomerization initiated by radicals generated via low-temperature treatment with molecular chlorine / High Energy Chem. 2015. Vol. 49. No. 3. P. 138 – 142. DOI: 10.1134/S001814391503008X

15. Alikina E. N., Pogoreltsev E. V. Determination of aromatic amines in wastewater by capillary electrophoresis / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 7. P. 22 – 27 [in Russian]. DOI: 10.26896/1028-6861-2019-85-7-22-27

16. Rodin I. A., Stavrianidi A. N., Braun A. V., et al. Determination of chlorovinylarsinic and chlorovinylarsonic acids in water bodies by capillary electrophoresis method with direct spectrophotometric detection / Industr. Lab. Mater. Diagn. 2015. Vol. 81. No. 3. P. 11 – 16 [in Russian].

17. Terabe S. Capillary separation: micellar electrokinetic chromatography / Annu. Rev. Anal. Chem. 2009. Vol. 2. P. 99 – 120. DOI: 10.1146/annurev.anchem.1.031207.113005

18. Silva M. Micellar electrokinetic chromatography: A review of methodological and instrumental innovations focusing on practical aspects / Electrophoresis. 2013. Vol. 34. No. 1. P. 141 – 158. DOI: 10.1002/elps.201200349.

19. Gushchaeva K. S., Tsyupko T. G., Voronova O. B., et al. Determination of caffeine, catechins and gallic acid in black tea of different geographical origin / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 9. P. 12 – 19 [in Russian]. DOI: 10.26896/1028-6861-2021-87-9-12-19

20. Fusayama T., Katayori T., Nomoto S. Corrosion of gold and amalgam placed in contact with each other / J. Dent. Res. 1963. Vol. 42. P. 1183 – 1197. DOI: 10.1177/00220345630420051301

21. Mukaeda L. E., Taguchi S. P., Robin A., et al. Degradation of Y2O3-stabilized ZrO2 ceramics in artificial saliva: ICP analysis of dissolved Y3+ and Zr4+ ions / Mater. Sci. Forum. 2012. Vol. 727 – 728. P. 1136 – 1141. DOI: 10.4028/www.scientific.net/MSF.727-728.1136


Review

For citations:


Mikhailova N.V., Stakhanova S.V., Ermolenko Yu.V., Kobets U.L., Vinokurov, E.G., Semenova I.N., Kharakh Ya.N. Determination of residual methyl methacrylate in aqueous extracts of polymethyl methacrylate by micellar electrokinetic chromatography. Industrial laboratory. Diagnostics of materials. 2025;91(4):22-27. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-4-22-27

Views: 175


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)