Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The impact of formic acid as a mobile phase additive on the retention of dead time markers in reversed-phase high-performance liquid chromatography

https://doi.org/10.26896/1028-6861-2025-91-5-5-9

Abstract

The effect of formic acid as a mobile phase additive on the retention time of five compounds (sodium nitrite, potassium iodide, acetone, uracil, oxalic acid) selected as dead time markers was studied in reversed-phase high-performance liquid chromatography (RP HPLC). All the studied compounds were shown to have weak retention on the surface of octadecylsilica gel under neutral conditions. However, the introduction of an acidic additive to the mobile phase leads to an increase in the retention of compounds giving an alkaline reaction. This effect was particularly strong for sodium nitrite. The lowest retention time was observed for oxalic acid, and it can be recommended as a dead time marker for the analysis of weakly polar and nonpolar compounds in neutral and acidic media.

About the Authors

O. I. Grinevich
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Russian Federation

Oksana I. Grinevich

31-4, Leninsky prosp., Moscow, 119071



T. M. Baygildiev
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences; MIREA - Russian Technological University (Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Timur M. Baygildiev

31-4, Leninsky prosp., Moscow, 119071

86, Vernadsky prosp., Moscow, 119571



References

1. Daignault L. G., Jackman D. C., Rillema D. P. The Case of the Elusive tm Values in HPLC / Chromatographia. 1989. Vol. 27. No. 3. P. 156 – 158. DOI: 10.1007/bf02265868

2. Meyer V. R. Practical High-Performance Liquid Chromatography. — Wiley, 2010. — 408 p.

3. Vergeynst L., Van Langenhove H., Joos P., et al. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry / Anal. Bioanal. Chem. 2014. Vol. 406. No. 11. P. 2533 – 2547. DOI: 10.1007/s00216-014-7672-4

4. Deineka V. I. A critical review of methods for the determination of dead time (volume) / Sorb. Khromatogr. Prots. 2024. Vol. 24. No. 5. P. 631 – 642 [in Russian]. DOI: 10.17308/sorpchrom.2024.24/12503

5. Chen N., Zhang Y., Lu P. The S index in the retention equation in reversed-phase high-performance liquid chromatography / J. Chromatogr. 1992. Vol. 603. P. 35 – 42. DOI: 10.1016/0021-9673(92)85343-R

6. Konstantinov A. V., Shafigulin R. V., Il’in M. M., et al. Sorption of certain isatins on various sorbents under RP-HPLC conditions / Russ. J. Phys. Chem. A. 2013. Vol. 87. No. 6. P. 1039 – 1042. DOI: 10.1134/S0036024413060150

7. Chirkin V. A., Karpov S. I., Selemenev V. F. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography / Russ. J. Phys. Chem. A. 2012. Vol. 86. No. 12. P. 1903 – 1908. DOI: 10.1134/S0036024412120060

8. Trebel N., Höltzel A., Steinhoff A., et al. Insights from molecular simulations about dead time markers in reversed-phase liquid chromatography / J. Chromatogr. A. 2021. Vol. 1640. 461958. DOI: 10.1016/j.chroma.2021.461958

9. Domínguez J. A. G., Díez-Masa J. C. Retention Parameters in Chromatography. Part A. Hold-up volume concept in column chromatography / Pure Appl. Chem. 2001. Vol. 73. No. 6. P. 969 – 981. DOI: 10.1351/pac200173060969

10. Rimmer C. A., Simmons C. R., Dorsey J. G. The measurement and meaning of void volumes in reversed-phase liquid chromatography / J. Chromatogr. A. 2002. Vol. 965. Nos. 1 – 2. P. 219 – 232. DOI: 10.1016/S0021-9673(02)00730-6

11. Pous-Torres S., Torres-Lapasió J. R., García-Álvarez- Coque M. C. Performance of markers and the homologous series method for dead time estimation in reversed-phase liquid chromatography / J. Liq. Chromatogr. Relat. Technol. 2009. Vol. 32. No. 8. P. 1065 – 1083. DOI: 10.1080/10826070902841372

12. Nowotnik D. P., Narra R. K. A Comparison of Methods for the Determination of Dead Time in a Reversed-Phase High-Performance Liquid Chromatography System Used for the Measurement of Lipophilicity / J. Liq. Chromatogr. 1993. Vol. 16. No. 18. P. 3919 – 3932. DOI: 10.1080/10826079308019677

13. Deineka V. I., Oleinits E. Y., Blinova I. P., et al. Selectivity of the separation of isomeric chlorogenic acids under the conditions of reversed-phase HPLC / J. Anal. Chem. 2019. Vol. 74. No. 8. P. 778 – 783. DOI: 10.1134/S1061934819080057

14. Deineka V. I., Makarevich S. L., Blinova I. P., et al. Determination of the grape anthocyanins under reversed-phase HPLC conditions / Sorb. Khromatogr. Protsessy. 2021. Vol. 21. No. 5. P. 653 – 660 [in Russian]. DOI: 10.17308/sorpchrom.2021.21/3771

15. Williams A. J., Grulke C. M., Edwards J., et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry / J. Cheminform. 2017. Vol. 9. No. 1. P. 61. DOI: 10.1186/s13321-017-0247-6

16. Dolan J. Column volume for Superficially Porous Particles / Sep Science. 2021. https://www.sepscience.com/hplc-solutions-107-column-volume-for-superficially-porous-partichpl (accessed 22.02.2025).

17. Sychev K. S. Handbook on Liquid Chromatography. — Moscow: Tekhnosfera, 2010. — 272 p. [in Russian].

18. Kim S., Chen J., Chenget T., et al. PubChem 2023 update / Nucleic Acids Res. 2023. Vol. 51. Issue D1. P. D1373 – D1380. DOI: 10.1093/nar/gkac956

19. Jaitz L., Mueller B., Koellensperger G., et al. LC–MS analysis of low molecular weight organic acids derived from root exudation / Anal. Bioanal. Chem. 2011. Vol. 400. No. 8. P. 2587 – 2596. DOI: 10.1007/s00216-010-4090-0


Review

For citations:


Grinevich O.I., Baygildiev T.M. The impact of formic acid as a mobile phase additive on the retention of dead time markers in reversed-phase high-performance liquid chromatography. Industrial laboratory. Diagnostics of materials. 2025;91(5):5-9. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-5-5-9

Views: 171


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)