

Research of the properties of a complex oxide Bi2Co1/3Cu1/3Ni1/3Nb2O9+Δ with a pyrochlore structure
https://doi.org/10.26896/1028-6861-2025-91-5-38-44
Abstract
Bismuth-containing monodoped pyrochlores have promising photocatalytic and dielectric properties. The paper presents the results of studying the properties of multielement pyrochlore containing transition 3d-elements in equivalent amounts. Mixed oxide pyrochlore of the composition Bi2Co1/3Cu1/3Ni1/3Nb2O9+Δ (sp. gr. Fd-3m, a = 10.5378 ± 6 Å) was synthesized by the solid-phase reaction method. The chemical state of transition element cations in the oxide pyrochlore was estimated by X-ray photoelectron spectroscopy (XPS). The parameters of the Bi5d, Nb3d, Co2p, Ni2p, Cu2p XPS spectra for the mixed pyrochlore were compared with the parameters of transition element oxides. The content of Cu (I, II) cations was determined based on the analysis of the relative intensity of peaks in the Cu2p spectrum. It has been established that for complex pyrochlore a characteristic shift of Bi4f- and Nb3d-spectra to the region of lower energies by 0.25 and 0.65 eV, respectively, is observed. The width of the forbidden band of pyrochlore for the direct allowed most intense electronic transition is 1.1 eV. The obtained results can be used to improve the technology of manufacturing multilayer ceramic capacitors and microwave dielectric materials.
About the Authors
A. P. PetrakovRussian Federation
Anatoly P. Petrakov
55, Oktyabrsky prosp., Syktyvkar, 167001
K. A. Badanina
Russian Federation
Ksenia A. Badanina
55, Oktyabrsky prosp., Syktyvkar, 167001
A. A. Selyutin
Russian Federation
Artyom A. Selyutin
26, Universitetsky prosp., St. Petersburg, 198504
A. V. Koroleva
Russian Federation
Alexandra V. Koroleva
26, Universitetsky prosp., St. Petersburg, 198504
S. V. Nekipelov
Russian Federation
Sergey V. Nekipelov
4, ul. Oplesnina, Syktyvkar, 167982
B. A. Makeev
Russian Federation
Boris A. Makeev
54, ul. Pervomaiskaya, Syktyvkar, 167000
N. A. Zhuk
Russian Federation
Nadezhda A. Zhuk
55, Oktyabrsky prosp., Syktyvkar, 167001
References
1. Du H., Yao X. Structural trends and dielectric properties of Bi-based pyrochlores / Journal of Materials Science: Materials in Electronics. 2004. Vol. 15. P. 613 – 616. DOI: 10.1023/b:jmse.0000036041.84889.b2
2. Giampaoli G., Siritanon T., Day B., et al. Temperature independent low loss dielectrics based on quaternary pyrochlore oxides / Progress in Solid State Chemistry. 2018. Vol. 50. P. 16 – 23. DOI: 10.1016/j.progsolidstchem.2018.06.001
3. Barkovskiy N. V. Methods for identification of Bi (V) and unusual oxygen valence states in BaBiO3 and superconducting oxides of K – Ba – Bi – O system / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 8. P. 16 – 28 [in Russian]. DOI: 10.26896/1028-6861-2019-85-8-16-28
4. Subramanian M., Aravamudan G., Subba Rao G. Oxide pyrochlores: a review / Progress in Solid State Chemistry. 1983. Vol. 15. P. 55 – 143. DOI: 10.1016/0079-6786(83)90001-8
5. Kamba S., Porokhonsky V., Pashkin A., et al. Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore / Physical Review B. 2002. Vol. 66. No. 5. Art. 054106. DOI: 10.1103/physrevb.66.054106
6. Valant M. Dielectric relaxations in Bi2O3 – Nb2O5 – NiO cubic pyrochlores / Journal of the American Ceramic Society. 2009. Vol. 92. P. 955 – 958. DOI: 10.1111/j.1551-2916.2009.02984.x
7. Lufaso M. W., Vanderah T. A., Pazos I. M., et al. Phase formation, crystal chemistry, and properties in the system Bi2O3 – Fe2O3 – Nb2O5 / Journal of Solid State Chemistry. 2006. Vol. 179. P. 3900 – 3910. DOI: 10.1016/j.jssc.2006.08.036
8. Vanderah T. A., Lufaso M. W., Adler A. U., et al. Subsolidus phase equilibria and properties in the system Bi2O3: Mn2O3 ± x:Nb2O5 / Journal of Solid State Chemistry. 2006. Vol. 179. P. 3467 – 3477. DOI: 10.1016/j.jssc.2006.07.014
9. Rylchenko E. P., Makeev B. A., Sivkov D. V., et al. Features of phase formation of pyrochlore-type Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ / Letters on Materials. 2022. Vol. 12. P. 486 – 492. DOI: 10.22226/2410-3535-2022-4-486-492
10. Zhuk N. A., Makeev B. A., Krzhizhanovskaya M. G., et al. Features of the phase formation of Cr/Mn/Fe/Co/Ni/Cu codoped bismuth niobate pyrochlore / Crystals. 2023. Vol. 13. P. 1202. DOI: 10.3390/cryst13081202
11. Parshukova K. N., Sekushin N. A., Makeev B. A., et al. Synthesis and dielectric properties, XPS spectroscopy study of high-entropy pyrochlore / Letters on Materials. 2022. Vol. 12. P. 469 – 474. DOI: 10.22226/2410-3535-2022-4-469-474
12. Sukhanov K. S., Gilev A. R., Kiselev E. A., et al. Functional properties and structure-size factor in La1.4A0.6Ni0.6Fe0.4O4+δ (A = Ca, Sr, Ba) / Journal of Alloys and Compounds. 2024. Vol. 990. Art. 174369. DOI: 10.1016/j.jallcom.2024.174369
13. Aksenova T. V., Mysik D. K., Cherepanov V. A. Crystal structure and properties of Gd1 – xSrxCo1 – yFeyO3 – δ oxides as promising materials for catalytic and SOFC application / Catalysts. 2022. Vol. 12. P. 1344. DOI: 10.3390/catal12111344
14. Gilev A. R., Kiselev E. A., Sukhanov K. S., et al. Evaluation of La2 – x(Ca/Sr)xNi1 – yFeyO4+δ (x = 0.5, 0.6; y = 0.4, 0.5) as cathodes for proton-conducting SOFC based on lanthanum tungstate / Electrochimica Acta. 2022. Vol. 421. Art. 140479. DOI: 10.1016/j.electacta.2022.140479
15. Shevchenko V. A., Komayko A. I., Sivenkova E. V., et al. Effect of Ni/Fe/Mn ratio on electrochemical properties of the O3 – NaNi1 – x – yFexMnyO2 (0.25 ≤ x, y ≤ 0.75) cathode materials for Na-ion batteries / Journal of Power Sources. 2024. Vol. 596. Art. 234092. DOI: 10.1016/j.jpowsour.2024.234092
16. Akselrud L. G., Grin Yu. N., Zavalij P. Yu., et al. CSD-universal program package for single crystal or powder structure data treatment / Thes. Rep. XII Eur. Crystallogr. Meet. 1989. Vol. 12. P. 155.
17. Zhdanov P. A., Seregina I. F., Osipov K. B., et al. X-Ray Spectrpscopic Determination of Different Forms of Vanadium, Iron and Manganese in the Samples of Slag and Batch of Vanadium Production / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 3. P. 13 – 18 [in Russian].
18. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / Acta Crystallographica Section A: Foundations and Advances. 1976. Vol. 32. P. 751 – 767. DOI: 10.1107/s0567739476001551
19. Zhuk N. A., Krzhizhanovskaya M. G., Koroleva A. V., et al. Thermal expansion, XPS spectra and structural and electrical properties of a new Bi2NiTa2O9 pyrochlore / Inorganic Chemistry. 2021. Vol. 60. P. 4924 – 4934. DOI: 10.1021/acs.inorgchem.1c00007
20. Zhuk N. A., Krzhizhanovskaya M. G., Sekushin N. A., et al. Crystal structure, dielectric and thermal properties of cobalt doped bismuth tantalate pyrochlore / Journal of Materials Research and Technology. 2023. Vol. 22. P. 1791 – 1799. DOI: 10.1016/j.jmrt.2022.12.059
21. Hassel M., Freund H.-J. High resolution XPS study of a thin CoO(111) film grown on Co(0001) / Surface Science Spectra. 1996. Vol. 4. P. 273 – 278. DOI: 10.1116/1.1247797
22. Vanderah T., Siegrist T., Lufaso M., et al. Phase formation and properties in the system Bi2O3:2CoO1 + x:Nb2O5 / European Journal of Inorganic Chemistry. 2006. Vol. 2006. P. 4908 – 4914. DOI: 10.1002/ejic.200600661
23. Mansour A. N., Melendres C. A. Characterization of Ni2O3 · 6H2O by XPS / Surface Science Spectra. 1994. Vol. 3. P. 263 – 270. DOI: 10.1116/1.1247754
24. Barreca D., Gasparotto A., Tondello E. CVD Cu2O and CuO nanosystems Characterized by XPS / Surface Science Spectra. 2007. Vol. 14. P. 41 – 51. DOI: 10.1116/11.20080701
Review
For citations:
Petrakov A.P., Badanina K.A., Selyutin A.A., Koroleva A.V., Nekipelov S.V., Makeev B.A., Zhuk N.A. Research of the properties of a complex oxide Bi2Co1/3Cu1/3Ni1/3Nb2O9+Δ with a pyrochlore structure. Industrial laboratory. Diagnostics of materials. 2025;91(5):38-44. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-5-38-44