

Static strength of pultruded fiberglass composites at elevated and reduced temperatures under complex-stress state
https://doi.org/10.26896/1028-6861-2025-91-5-45-56
Abstract
Pultruded glass-fiber composites have been widely used in road infrastructure and in construction, but their strength characteristics under complex stress state at different temperatures have not been determined, which complicates their further implementation. This work is devoted to the determination of static strength and stiffness of pultruded glass-fiber composites under normal and shear stresses (induced by simultaneous axial loading and torsion of specimens) for three different temperatures. The paper reveals methodological aspects of testing under multiaxial loading, in particular, analyzes different variants of specimen tabs. The experimental part included uniaxial tensile, torsion, compression tests, as well as multiaxial combined tensile and compression tests with torsion at normal, elevated, and low temperatures. Sensitivity of pultruded glass-fiber composites to complex stress state is revealed. The failure envelopes were built for after axial and multiaxial testing at various temperatures. The failure criterion of the fourth order is proposed. The displacement and strain fields of the tubular specimens were analyzed using the VIC 3D at the chosen loadings and temperatures. The displacement fields were similar on the surfaces of the specimens that indicates of correct and uniform loading. The characteristic fractures were presented. The cracks on the specimens were different and correspond to respective loading parameters and temperatures. The obtained data allows to predict the failure of the pultruded glass-fiber composites under complex loadings and different temperatures, which is necessary for implementation of such materials.
About the Authors
O. A. StaroverovRussian Federation
Oleg A. Staroverov
29, Komsomolsky prosp., Perm, 614990
A. M. Kuchukov
Russian Federation
Artur M. Kuchukov
29, Komsomolsky prosp., Perm, 614990
A. M. Kuchukov
Russian Federation
Artur M. Kuchukov
29, Komsomolsky prosp., Perm, 614990
V. A. Melnikova
Russian Federation
Valerya A. Melnikova
29, Komsomolsky prosp., Perm, 614990
A. S. Elkin
Russian Federation
Aleksandr S. Elkin
30, str. 1, Bolshoy bul’var, Innovation Center Skolkovo, Moscow, 121205
I. V. Sergeichev
Russian Federation
Ivan V. Sergeichev
30, str. 1, Bolshoy bul’var, Innovation Center Skolkovo, Moscow, 121205
References
1. Zhang Y., Duan L., Liu X., et al. Distribution law of strain energy density for stiffness design of GFRP, UT/GFRP, and VRB/GFRP hybrid hat-shaped beams / Polym. Compos. 2023. Vol. 44. No. 11. DOI: 10.1002/pc.27039
2. Devan D. J., Rehman R. U., Sunny T., et al. Effect of different tab materials in the tensile testing of GFRP / J. Mech. Sci. Technol. 2023. Vol. 37. P. 4597 – 4603. DOI: 10.1007/s12206-023-0815-9
3. Mirdarsoltany M., Roghani H., Masoule M. S. T., et al. Evaluating GFRP bars under axial compression and quantifying load-damage correlation / Constr Build Mater. 2023. Vol. 409. DOI: 10.1016/j.conbuildmat.2023.133945
4. Polilov A. N., Vlasov D. D., Tatus N. A. Developing of the optimal shape and reinforcement structure of the specimen for adequate determination of the tensile strength in unidirectional composites / Zavod. Lab. Mater. Diagn. 2021. Vol. 87. No. 2. P. 43 – 55 [in Russian]. DOI: 10.26896/1028-6861-2021-87-2-43-55
5. Valevin E. O., Shvedkova A. K., Buharov S. V. The role of heat and humidity tests in the development of new polymeric composite materials / Zavod. Lab. Mater. Diagn. 2016. Vol. 82. No. 2. P. 28 – 32 [in Russian].
6. Pankov A. V. Evaluation of the durability of the elements made of polymer composite materials under cyclic irregular loading / Zavod. Lab. Mater. Diagn. 2016. Vol. 82. No. 9. P. 58 – 64 [in Russian].
7. Chang Y., Weidong W., Yiming X., et al. Quasi-static mechanical behavior of filament wound composite thin-walled tubes: Tension, torsion, and multi-axial loading / Thin Wall Struct. 2022. Vol. 177. 109361. DOI: 10.1016/j.tws.2022.109361
8. Meijer G., Ellyin F. A failure envelope for ±60° filament wound glass fibre reinforced epoxy tubulars / Compos. Part A: Appl. Sci. Manuf. 2008. Vol. 39. No. 3. P. 555 – 564. DOI: 10.1016/j.compositesa.2007.11.002
9. Polilov A. N., Arutyunova A. S., Tatus’ N. A. Effect of stress concentration near grips on the tensile strength of composites / Zavod. Lab. Mater. Diagn. 2020. Vol. 86. No. 11. P. 48 – 59. DOI: 10.26896/1028-6861-2020-86-11-48-59
10. Wildemann V., Staroverov O., Strungar E., et al. Mechanical properties degradation of fiberglass tubes during biaxial proportional cyclic loading / Polym. 2023. Vol. 15. No. 9. DOI: 10.3390/polym15092017
11. Gonabadi H., Oila A., Yadav A., Bull S. Fatigue damage analysis of GFRP composites using digital image correlation / J. Ocean Eng. Mar. Energy. 2021. Vol. 7. P. 25 – 40. DOI: 10.1007/s40722-020-00184-6
12. Strungar E. M., Lobanov D. S. Development of the digital image correlation (DIC) method for mechanical testing at elevated temperatures / PNRPU Mech. Bull. 2022. No. 3. P. 147 – 159. DOI: 10.15593/perm.mech/2022.3.15
13. Laurin F., Charrier J.-S., Lévêque D., et al. Determination of the Properties of Composite Materials Thanks to Digital Image Correlation Measurements / Procedia IUTAM. 2012. Vol. 4. P. 106 – 115. DOI: 10.1016/j.piutam.2012.05.012
14. Ziaja D., Jurek M., Śliwa R., et al. DIC application for damage detection in FRP composite specimens based on an example of a shearing test / Archiv. Civ. Mech. Eng. 2024. Vol. 47. No. 24. DOI: 10.1007/s43452-024-00859-z
15. Cintra G. G., Cardoso D., Vieira J. D., Keller T. Experimental investigation on the moment-rotation performance of pultruded FRP web-flange junctions / Compos. B. Eng. 2021. Vol. 222. 109087. DOI: 10.1016/j.compositesb.2021.109087
16. Armanfard A., Melenka G. W. Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension-torsion loading / Compos. Struct. 2021. Vol. 269. 114049. DOI: 10.1016/j.compstruct.2021.114049
17. De S., Nuli K. C., Fulmali A. O., et al. Elevated-temperature mechanical performance of GFRP composite with functionalized hybrid nanofiller / J. Appl. Polym. Sci. 2022. Vol. 139. No. 48. DOI: 10.1002/app.53223
18. Rosa I. C., Firmo J. P., Correia J. R. Experimental study of the tensile behaviour of GFRP reinforcing bars at elevated temperatures / Constr. Build Mater. 2022. Vol. 324. 126676. DOI: 10.1016/j.conbuildmat.2022.126676
19. AlAjarmeh O., Manalo A., Benmokrane B., et al. Compression behavior of GFRP bars under elevated In-Service temperatures / Constr. Build Mater. 2022. Vol. 314. 125675. DOI: 10.1016/j.conbuildmat.2021.125675
20. Khaneghahi M. H., Najafabadi E. P., Bazli M., et al. The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profiles / Constr. Build Mater. 2020. Vol. 249. 118725. DOI: 10.1016/j.conbuildmat.2020.118725
21. Hajiloo H., Green M. F., Gales J. Mechanical properties of GFRP reinforcing bars at high temperatures / Constr. Build Mater. 2018. Vol. 162. P. 142 – 154. DOI: 10.1016/j.conbuildmat.2017.12.025
22. Xue C., Yu M., Yang B., et al. Experimental and numerical study on tensile properties of bolted GFRP joints at high and low temperatures / Compos. Struct. 2022. Vol. 293. 115743. DOI: 10.1016/j.compstruct.2022.115743
23. Han C. L., Wang G., Li N., et al. Study on interlaminar performance of CNTs/epoxy film enhanced GFRP under low-temperature cycle / Compos. Struct. 2021. Vol. 272. 114191. DOI: 10.1016/j.compstruct.2021.114191
24. Takeda T., Miura M., Shindo Y., Narita F. Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures / Cryogenics. 2013. Vol. 58. P. 55 – 61. DOI: 10.1016/j.cryogenics.2013.10.001
25. Shindo Y., Inamoto A., Narita F., Horiguchi K. Mode I fatigue delamination growth in GFRP woven laminates at low temperatures / Eng. Fract. Mech. 2006. Vol. 73. No. 14. P. 2080 – 2090. DOI: 10.1016/j.engfracmech.2006.03.015
Review
For citations:
Staroverov O.A., Kuchukov A.M., Kuchukov A.M., Melnikova V.A., Elkin A.S., Sergeichev I.V. Static strength of pultruded fiberglass composites at elevated and reduced temperatures under complex-stress state. Industrial laboratory. Diagnostics of materials. 2025;91(5):45-56. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-5-45-56