Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A study of applicability of instrumented indentation method to determine the mechanical properties of thermoplastic

https://doi.org/10.26896/1028-6861-2025-91-5-67-76

Abstract

The article deals with the method of instrumental indentation as an effective tool for studying the mechanical properties of thermoplastics. The method allows to determine such material properties as hardness, modulus of elasticity, rheological characteristics. The paper presents a review of examples of using the method of instrumental indentation to solve research problems in studying the properties of various types of polymeric materials, describing the parameters that affect the results of measurements. Analyses and experimental studies of the method’s capabilities were carried out on the example of high-density polyethylene, which is used in the production of gas pipelines. The results showed the applicability of this method in studying the material properties of polyethylene (PE) gas pipeline pipes for diagnosing their technical condition. In this work, samples that have been in service for a long time and a sample of new pipe were investigated. It has been revealed that the hardness values of polyethylene samples of different service life as an indicator of resistance to plastic deformation under static loads are quite close, while the rheological properties differ significantly. This peculiarity should be taken into account when conducting various mechanical tests, since the rate of load increase during such tests will significantly affect their results. It was found that the values of hardness and modulus of elasticity decrease with increasing indenter dwell time under load due to stress relaxation in the deformed region under the indenter. The influence of polyethylene structure on its mechanical properties is considered. It is also revealed that the modulus of elasticity of polyethylene samples multiply increases when the degree of crystallinity changes from 48 to 56%. The article describes the prospectivity and efficiency of using the method of instrumental indentation to analyse the elastic-plastic and rheological properties of thermoplastics, as well as their relationship with the crystal structure.

About the Authors

A. A. Vinogradova
Empress Catherine II St. Petersburg Mining University
Russian Federation

Anna A. Vinogradova

2, 21st Line V.O., St. Petersburg, 199106



K. V. Gogolinskiy
St. Petersburg Nuclear Physics Institute
Russian Federation

Kirill V. Gogolinskiy

1, mkr. Orlova roshcha, Gatchina, Leningradskaya oblast’, 188300



E. K. Shchiptsova
Empress Catherine II St. Petersburg Mining University
Russian Federation

Ekaterina K. Shchiptsova

2, 21st Line V.O., St. Petersburg, 199106



References

1. Oreshko E. I., Utkin D. A., Erasov V. S., Lyakhov A. A. Methods of measurement of hardness of materials (review) / Tr. VIAM. Élektron. Nauch.-Tekhn. Zh. 2020. Vol. 1(85). P. 101 – 117 [in Russian]. DOI: 10.18577/2307-6046-2020-0-1-101-117

2. Gromyka D. S., Gogolinskiy K. V. Introduction of evaluation procedure of excavator bucket teeth into maintenance and repair: Prompts / MIAB. Mining Inf. Anal. Bull. 2023. Vol. 8. P. 94 – 111 [in Russ]. DOI: 10.25018/0236_1493_2023_8_0_94

3. Shemyakin S. A., Shishkin E. A. Physical and mathematical model of rock destruction by a milling machine cutter / Journal of Mining Institute. 2021. Vol. 251. P. 639 – 647. DOI: 10.31897/pmi.2021.5.3

4. Fischer-Cripps A. C. Nanoindentation. — New York: Springer, January, 2011. — 282 p. DOI: 10.1007/978-1-4419-9872-9

5. Matyunin V. M., Marchenkov A. Yu., Volkov P. V. Determination of the Conventional Yield Stress of Metal from the Kinetic Spherical Indentation Test Diagram / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 6. P. 57 – 61 [in Russian].

6. Vorob’ev R. A., Litovchenko V. N., Dubinskii V. N. Study of the Hardness and Modulus of Elasticity of Ferrite using Kinetic Indentation Method / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 5. P. 55 – 60 [in Russian].

7. Kanaev A. T., Ramazanova Z. M., Biizhanov S. K. Study of plasma-hardened wheel steel using nanoindentation / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 4. P. 56 – 60 [in Russian]. DOI: 10.26896/1028-6861-2020-86-4-56-60

8. Long X., Dong R., Su Y., Chang C. Critical Review of Nanoindentation-Based Numerical Methods for Evaluating Elastoplastic Material Properties / Coatings. 2023. Vol. 13(8). 1334. DOI: 10.3390/coatings13081334

9. Bulychev S. I., Alekhin V. P. Kinetic hardness and microhardness method in indentation testing / Industr. Lab. 1987. Vol. 53. P. 76 – 80.

10. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / J. Mater. Res. 1992. Vol. 7(6). P. 1564 – 1583.

11. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / Journal of Materials Research. 2004. Vol. 19. P. 3 – 20. DOI: 10.1557/jmr.2004.19.1.3

12. Arora G., Pathak H. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach / Composites Part C: Open Access. 2021. Vol. 4. 100103. DOI: 10.1016/j.jcomc.2020.100103

13. Torskaya E. V., Yakovenko A. A., Shkaley I. V., Svistkov A. L. An indentation study of the temperature-dependent properties of modified polyurethanes / Fiz. Mezomekh. 2023. Vol. 26(3). P. 29 – 38. DOI: 10.55652/1683-805x_2023_26_3_29

14. Hardiman M., Vaughan T. J., McCarthy C. T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures / Composite Structures. 2017. Vol. 180. P. 782 – 798. DOI: 10.1016/j.compstruct.2017.08.004

15. Maxwell A. S., Monclus M. A., Jennett N. M., Dean G. Accelerated testing of creep in polymeric materials using nanoindentation / Polymer Testing. 2011. Vol. 30(4). P. 366 – 371. DOI: 10.1016/j.polymertesting.2011.02.002

16. Christöfl P., Czibula C., Seidlhofer T., et al. Morphological characterization of semi-crystalline POM using nanoindentation / International Journal of Polymer Analysis and Characterization. 2021. Vol. 26(8). P. 692 – 706. DOI: 10.1080/1023666x.2021.1968122

17. Schieppati J., Gehling T., Azevedo M., et al. Investigation into the state of cure of elastomers through nanoindentation / Polymer Testing. 2024. Vol. 133. DOI: 10.1016/j.polymertesting.2024.108417

18. Christöfl P., Ottersböck B., Czibula C., et al. Nanoindentation for Fast Investigation of PET Film Degradation / JOM. 2022. Vol 74(6). P. 2287 – 2294. DOI: 10.1007/s11837-022-05278-0

19. Christöfl P., Czibula C., Berer M., et al. Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentation / Polymer Testing. 2021. Vol. 93. DOI: 10.1016/j.polymertesting.2020.106978

20. Zhao Y., Li H., Zhang Z., et al. Nanoindentation study of time-dependent mechanical properties of ultra-high-molecular-weight polyethylene (UHMWPE) at different temperatures / Polymer Testing. 2020. Vol. 91. DOI: 10.1016/j.polymertesting.2020.106787

21. Alghamdi A. S., Ashcroft I. A., Song M. Mechanical characterisation of novel polyethylene nanocomposites by nanoindentation / WIT Transactions on Engineering Sciences. 2013. Vol. 77. P. 89 – 100. DOI: 10.2495/mc130081

22. Banerjee T., Kar S. Nanoindentation of Reinforced Polymer Composites / Encyclopedia of Materials: Plastics and Polymers. 2022. P. 688 – 699. DOI: 10.1016/b978-0-12-820352-1.00281

23. Poulose A. M., Elnour A. Y., Samad U. A., et al. Nano-indentation as a tool for evaluating the rheological threshold in polymer composites / Polymer Testing. 2019. Vol. 80. DOI: 10.1016/j.polymertesting.2019.106150

24. Briscoe B. J., Fiori L., Pelillo E. Nano-indentation of polymeric surfaces. / J. Phys. D: Appl. Phys. 1998. Vol. 31(19). P. 2395 – 2405. DOI: 10.1088/0022-3727/31/19/006

25. Wang Y., Shang L., Zhang P., et al. Measurement of viscoelastic properties for polymers by nanoindentation / Polymer Testing. 2020. Vol. 83. DOI: 10.1016/j.polymertesting.2020.106353

26. Kumar A., Nayak S. K., Banerjee A., Laha T. Multi-scale indentation creep behavior in Fe-based amorphous/nanocrystalline coating at room temperature / Materials Letters. 2021. Vol. 283. DOI: 10.1016/j.matlet.2020.128768

27. Zha S., Lan H.-Q., Lin N., et al. Investigating the time- and space-dependent mechanical, physical and chemical properties of aged polyethylene gas pipes using nanoindentation tests / Journal of Materials Research and Technology. 2023. Vol. 24. P. 3383 – 3398. DOI: 10.1016/j.jmrt.2023.04.004

28. Byrne N., Ghanei S., Espinosa S. M., Neave M. Influence of Hydrogen on Vintage Polyethylene Pipes: Slow Crack Growth Performance and Material Properties / International Journal of Energy Research. 2023. Vol. 2023. DOI: 10.1155/2023/6056999

29. Prochazkova Z., Kralik V., Nemecek J., Sejnoha M. Recycled plastic material properties defined by nanoindentation / Advanced Materials Letters. 2016. Vol. 7(1). P. 78 – 82. DOI: 10.5185/amlett.2016.6170

30. Shaheer M., Troughton M., Khamsehnezhad A., Song J. A study of the micro-mechanical properties of butt fusion-welded joints in HDPE pipes using the nanoindentation technique / Welding in the World. 2017. Vol. 61(4). P. 819 – 831. DOI: 10.1007/s40194-017-0454-9

31. Nishimori F., Ikeshima D., Kanamori K., et al. Characterization of the surface degraded layer of polymers using an indentation method / Materials Today Communications. 2021. Vol. 26. DOI: 10.1016/j.mtcomm.2020.101873

32. Pertin T., Minatchy G., Adoue M., et al. Investigation of nanoindentation as a fast characterization tool for polymer degradation study / Polymer Testing. 2020. Vol. 81. DOI: 10.1016/j.polymertesting.2019.106194

33. Zhang X., Zheng Y., Li G. Y., et al. Indentation creep tests to assess the viscoelastic properties of soft materials: Theory, method and experiment / International Journal of Non-Linear Mechanics. 2019. Vol. 109. P. 204 – 212. DOI: 10.1016/j.ijnonlinmec.2018.12.005

34. Amjadi M., Fatemi A. Creep behavior and modeling of high-density polyethylene (HDPE) / Polymer Testing. 2021. Vol. 94. 107031. DOI: 10.1016/j.polymertesting.2020.107031

35. Song Z., Komvopoulos K. Elastic-plastic spherical indentation: Deformation regimes, evolution of plasticity, and hardening effect / Mechanics of Materials. 2013. Vol. 61. P. 91 – 100. DOI: 10.1016/j.mechmat.2013.01.003

36. Cheng L., Xia X., Scriven L. E., Gerberich W. W. Spherical-tip indentation of viscoelastic material / Mechanics of Materials. 2005. Vol. 37(1). P. 213 – 226. DOI: 10.1016/j.mechmat.2004.03.002

37. Jin C., Ebenstein D. M. Nanoindentation of compliant materials using Berkovich tips and flat tips / Journal of Materials Research. 2017. Vol. 32(2). P. 435 – 450. DOI: 10.1557/jmr.2016.483

38. Naseem R., Zhao L., Silberschmidt V. V., et al. Characterisation of mechanical properties of polymeric stent using nanoindentation / Procedia Structural Integrity. 2019. Vol. 15. DOI: 10.1016/j.prostr.2019.07.010

39. Inoue N., Yonezu A., Watanabe Y., et al. Prediction of viscoplastic properties of polymeric materials using sharp indentation / Computational Materials Science. 2015. Vol. 110. P. 321 – 330. DOI: 10.1016/j.commatsci.2015.08.033

40. Korshunov V. A., Pavlovich A. A., Bazhukov A. A. Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors / Journal of Mining Institute. 2023. Vol. 262. P. 606 – 618. DOI: 10.31897/pmi.2023.16

41. Van Landingham M. R., Villarrubia J. S., Guthrie W. F., Meyers G. F. Nanoindentation of polymers: An overview / Macromolecular Symposia. 2001. Vol. 167. P. 15 – 43. DOI: 10.1002/1521-3900(200103)167:1 <15::aid-masy15>3.0.co;2-t

42. Oyen M. L. Analytical techniques for indentation of viscoelastic materials / Philosophical Magazine. 2006. Vol. 86 (33 – 35, Spec. Issue). P. 5625 – 5641. DOI: 10.1080/14786430600740666

43. Alisafaei F., Han C. S. Indentation depth dependent mechanical behavior in polymers / Advances in Condensed Matter Physics. 2015. Vol. 2015. Hindawi Publishing Corporation. DOI: 10.1155/2015/391579

44. Chen X., Ogasawara N., Zhao M., Chiba N. On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials / Journal of the Mechanics and Physics of Solids. 2007. Vol. 55(8). P. 1618 – 1660. DOI: 10.1016/j.jmps.2007.01.010

45. Briscoe B. J., Sinha S. K. Hardness and Normal Indentation of Polymers / Swallowe G. M., ed. Mechanical Properties and Testing of Polymers. Polymer Science and Technology Series. Vol. 3. — Dordrecht: Springer, 1999. DOI: 10.1007/978-94-015-9231-4 25

46. Ghomsheh M. Z., Khatibi G. The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene / Materials. 2023. Vol. 16(1). DOI: 10.3390/ma16010143

47. Maculotti G., Genta G., Galetto M. An uncertainty-based quality evaluation tool for nanoindentation systems / Measurement: Journal of the International Measurement Confederation. 2024. Vol. 225. DOI: 10.1016/j.measurement.2023.113974

48. Potapov A. I., Gogolinskiy K. V., Kondratiev A. V., Umanskiy A. S. Indirect assessment of indenter area function for measuring mechanical properties by instrumented indentation / Kontrol’. Diagnostika. 2017. Vol. 2. P. 28 – 32 [in Russian]. DOI: 10.14489/td.2017.02.pp.028-032

49. Potapov A. I., Gogolinskiy K. V., Syasko V. A., et al. Methodological and metrological aspects of materials mechanical properties measurements by instrumented indentation / Kontrol’. Diagnostika. 2016. Vol. 8. P. 16 – 21 [in Russian]. DOI: 10.14489/td.2016.08.pp.016-021

50. Zemenkova M. Y., Chizhevskaya E. L., Zemenkov Y. D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies / Journal of Mining Institute. 2022. Vol. 258. P. 933 – 944. DOI: 10.31897/pmi.2022.105

51. Tcvetkov P. S., Fedoseev S. V. Analysis of project organization specifics in small-scale LNG production / Journal of Mining Institute. 2020. Vol. 246. P. 678 – 686. DOI: 10.31897/pmi.2020.6.10

52. Gogolinskiy K. V., Vinogradova A. A., Kopylova T. N., et al. Study of physicochemical properties of polyethylene gas pipelines material with a prolonged service life / International Journal of Pressure Vessels and Piping. 2022. Vol. 200. 104825. DOI: 10.1016/j.ijpvp.2022.104825

53. Aleksander G. P., Yifan T., Fuming Z. Predicting Service Life of Polyethylene Pipes under Crack Expansion using «Random Forest» Method / International Journal of Engineering. 2023. Vol. 36(12). P. 2243 – 2252. DOI: 10.5829/ije.2023.36.12c.14

54. Schipachev A., Fetisov V., Nazyrov A., et al. Study of the pipeline in emergency operation and assessing the magnitude of the gas leak / Energies. 2022. Vol. 15(14). DOI: 10.3390/en15145294

55. Fetisov V. G., Shalygin A. V., Modestova S. A., et al. Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads / Energies. 2023. Vol. 60(16). P. 1 – 16. DOI: 10.3390/en16010060

56. Baktizin R. N., Zaripov R. M., Korobkov G. E., Masalimov R. B. Assessment of internal pressure effect, causing additional bending of the pipeline / Journal of Mining Institute. 2020. Vol. 242. P. 160. DOI: 10.31897/pmi.2020.2.160

57. Palaev A. G., Fuming Z. A Leak Detection Method for Underground Polyethylene Gas Pipelines Using Simulation Software Ansys Fluent / International Journal of Engineering. 2024. Vol. 37(8). P. 1615 – 1621. DOI: 10.5829/ije.2024.37.08b.14

58. Shammazov I. A., Karyakina E. D., Shalygin A. V. Stress-strain state simulation of an underground liquefied natural gas pipeline / Problems of Gathering, Treatment and Transportation of Oil and Oil Products. 2023. Vol. 3(143). P. 77 – 93 [in Russian]. DOI: 10.17122/ntj-oil-2023-3-77-93

59. Zha S., Lan H.-Q., Lin N., Meng T. Degradation and characterization methods for polyethylene gas pipes after natural and accelerated aging / Polymer Degradation and Stability. 2023. Vol. 208. DOI: 10.1016/j.polymdegradstab.2022.110247


Review

For citations:


Vinogradova A.A., Gogolinskiy K.V., Shchiptsova E.K. A study of applicability of instrumented indentation method to determine the mechanical properties of thermoplastic. Industrial laboratory. Diagnostics of materials. 2025;91(5):67-76. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-5-67-76

Views: 160


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)