Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Применение негауссовых распределений вероятности для описания свойств высокопрочных волокон

https://doi.org/10.26896/1028-6861-2025-91-6-81-88

Аннотация

Рассмотрена модель применения трехпараметрического распределения Вейбулла для описания прочности пучка параллельных волокон (комплексной нити) при растяжении. Актуальность вопроса связана с тем, что высокопрочные волокна производятся обычно в виде нитей, а не одиночных волокон. Для моделирования выбраны волокна с диаграммой деформирования, близкой к линейной: углеродные, стеклянные и арамидные (Кевлар-49). Результаты испытаний одиночных углеродных и стеклянных волокон получены F. Mesquita совместно с коллегами. Для моделирования пучка арамидных волокон использованы данные авторов, полученные при испытании одиночных волокон Кевлар-49. Использование двухпараметрического распределения Вейбулла – Гнеденко для прогнозирования прочности армированных пластиков предполагает возможность накопления обрывов с самого начала деформации, что в дальнейшем может привести к появлению в композите кластера обрывов волокон бесконечного размера при любой нагрузке, что противоречит наблюдениям. Показано, что трехпараметрическое распределение лучше описывает полученные результаты и не требует предположения о разрушении волокон при нулевом напряжении. Установлено, что процесс разрушения стеклянных волокон начинается практически от старта их нагружения и двухпараметрическое распределение Вейбулла – Гнеденко хорошо описывает распределение прочности данных волокон.

Об авторах

П. В. Михеев
Научно-образовательный центр «Цифровые высокоскоростные транспортные системы», Российская открытая академия транспорта (РУТ/МИИТ), Россия, 127055, Москва, ул. Образцова, д. 9
Россия

Петр Викторович Михеев



А. К. Лебедев
Центр управления проектами МГТУ «Станкин», Россия, 127055, Москва, Вадковский пер., д. 1
Россия

Александр Константинович Лебедев



Л. Р. Борисова
Финансовый университет при Правительстве РФ, Россия, 125993, Москва, Ленинградский просп., 49
Россия

Людмила Робертовна Борисова



Список литературы

1. Мэттьюз Ф., Ролингс Р. Композитные материалы. Механика и технология. — М.: Техносфера, 2004. — 406 с.

2. Михайлин Ю. А. Волокнистые полимерные композиционные материалы в технике. — СПб.: ЦОП «Профессия», 2013. — 720 с.

3. Vasiliev V. V., Morozov E. Advanced mechanics of composite materials and structural elements. 3rd Edition. — Elsevier, 2013. — 816 p.

4. Mikheev P. V., Mostovoy T. E., Stepashkin A. A., et al. Methodological challenges in accounting for test conditions when determining the static elastic modulus of advanced aramid structural fibers / Fibre Chem. 2024. Vol. 55. No. 5. P. 328 – 333. DOI: 10.1007/s10692-024-10485-3

5. Dalinkevich A. A., Gumargalieva K. Z., Marakhovsky S. S., Soukhanov A. V. Modern basalt fibrous materials and basalt fiber-based polymeric composites / Journal of Natural Fibers. 2009. Vol. 6. No. 3. P. 248 – 271. DOI: 10.1080/15440470903123173

6. Баженов С. Л., Михеев П. В., Берлин А. А. и др. Влияние дисперсии прочности нитей на прочность жгута органических волокон / ДАН СССР. 1984. Т. 277. № 1. С. 107 – 111.

7. Панин С. В., Богданов А. А., Любутин П. С. и др. Оптический метод оценки деградации свойств полимерных композитов, армированных углеродными волокнами, при циклическом нагружении / Заводская лаборатория. Диагностика материалов. 2023. Т. 89. № 1. С. 46 – 55. DOI: 10.26896/1028-6861-2023-89-1-46-55

8. Матвиенко Ю. Г., Резников Д. О., Кузьмин Д. А., Потапов В. В. Оценка вероятности усталостного разрушения конструкционных элементов с учетом разброса начальных размеров трещин при детерминированном и случайном характере нагружения / Заводская лаборатория. Диагностика материалов. 2021. Т. 87. № 10. С. 44 – 53. DOI: 10.26896/1028-6861-2021-87-10-44-53

9. Лепихин А. М., Махутов Н. А., Шокин Ю. И. Вероятностное многомасштабное моделирование разрушений структурно-неоднородных материалов и конструкций / Заводская лаборатория. Диагностика материалов. 2020. Т. 86. № 7. С. 45 – 54. DOI: 10.26896/1028-6861-2020-86-7-45-54

10. Орлов А. И. Вероятность и прикладная статистика: основные факты. — М.: Кнорус, 2014. — 191 с.

11. Орлов А. И. Вероятностно-статистические модели данных — основа методов прикладной статистики / Заводская лаборатория. Диагностика материалов. 2020. Т. 86. № 7. С. 5 – 6. DOI: 10.26896/1028-6861-2020-86-7-5-6

12. Немец Я., Серенсен С. В., Стреляев В. С. Прочность пластмасс. — М.: Машиностроение, 1970. — 335 с.

13. Parthasarathy T. A. Extraction of Weibull parameters of fiber strength from means and standard deviations of failure loads and fiber diameters / J. Am. Ceram. Soc. 2001. Vol. 84. No. 5. P. 588 – 592. DOI: 10.1111/j.1151-2916.2001.tb00703.x

14. Mirajkar R. M., Kore B. G. Weibull parameters estimation for brittle materials / International Journal of Scientific and Innovative Mathematical Research (IJSIMR). 2015. Vol. 3. No. 7. P. 739 – 744.

15. Аргон А. Статистические аспекты разрушения. Композиционные материалы. Т. 5. Разрушение и усталость / Пер. с англ. — М.: Мир, 1978. — 484 с.

16. Ермоленко А. Ф. Модель разрушения однонаправленного волокнита с упругой матрицей / Механика композитных материалов. 1985. № 2. С. 247 – 256.

17. Фудзии Т., Дзако М. Механика разрушения композиционных материалов / Пер. с яп. — М.: Мир, 1982. — 232 с.

18. Копьев И. М., Овчинский А. С. Разрушение металлов, армированных волокнами. — М.: Наука, 1977. — 240 с.

19. Harikrishnan R., Mohite P. M., Upadhyay C. S. Generalized Weibull model-based statistical tensile strength of carbon fibres / Arch. Appl. Mech. 2018. Vol. 88. No. 9. P. 1617 – 1636. DOI: 10.1007/s00419-018-1391-9

20. Watanabe J., Tanaka F., Okuda H., Okabe T. Tensile strength distribution of carbon fibers at short gauge lengths / Adv. Compos. Mater. 2014. Vol. 23. P. 535 – 540. DOI: 10.1080/09243046.2014.915120

21. Daniels H. E. The statistical theory of strengyh of bundles of threads / Proc. Roy. Soc. London. 1945. A183. P. 404 – 435.

22. Работнов Ю. Н. Механика деформируемого твердого тела. — М.: Наука, 1979. — 744 с.

23. Александрова В. Е., Ломакина О. Г. Масштабный эффект в однонаправленных композитах / Изв. АН СССР. МТТ. 1974. № 1. С. 143 – 147.

24. Ломакина О. Г. Реализация прочности волокон в однонаправленных композитах / Машиноведение. 1975. № 2. С. 52 – 58.

25. Berger M. H., Jeulin D. Statistical analysis of the failure stresses of ceramic fibres: Dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density / J. Mater. Sci. Materi. Sci. Eng. 2003. Vol. 38. P. 2913 – 2923. DOI: 10.1023/a:1024405123420

26. Mesquita F., Bucknell S., Leray Y., et al. Large datasets of single carbon and glass fibre mechanical properties obtained with automated testing equipment / Composites Part A: Applied Science and Manufacturing (data in Brief). 2021. Vol. 36. No. 6. P. 107085. DOI: 10.1016/j.compositesa.2021.106389

27. Бартенев Г. М., Зеленев Ю. В. Физика и механика полимеров. — М.: Высшая школа, 1983. — 392 с.

28. Бойко Ю. М., Марихин В. А., Москалюк О. А., Мясникова Л. П. Особенности статистических распределений прочностей моно- и полифиламентных ультраориентированных высокопрочных волокон сверхвысокомолекулярного полиэтилена / Физика твердого тела. 2020. Т. 62. Вып. 4. С. 7 – 14. DOI: 10.21883/ftt.2020.04.49125.637

29. Ding J., Chen G., Huang W., et al. Tensile strength statistics and fracture mechanism of ultrahigh molecular weight polyethylene fibers: On the Weibull distribution / ACS Omega. 2024. Vol. 9. No. 11. P. 12984 – 12991. DOI: 10.1021/acsomega.3c09230

30. Орлов А. И. О требованиях к статистическим методам анализа данных (обобщающая статья) / Заводская лаборатория. Диагностика материалов. 2023. Т. 89. № 11. С. 98 – 106. DOI: 10.26896/1028-6861-2023-89-11-98-106


Рецензия

Для цитирования:


Михеев П.В., Лебедев А.К., Борисова Л.Р. Применение негауссовых распределений вероятности для описания свойств высокопрочных волокон. Заводская лаборатория. Диагностика материалов. 2025;91(6):81-88. https://doi.org/10.26896/1028-6861-2025-91-6-81-88

For citation:


Mikheev P.V., Lebedev A.K., Borisova L.R. Application non-Gaussian probability distributions to describe the properties of high-strength fibers. Industrial laboratory. Diagnostics of materials. 2025;91(6):81-88. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-81-88

Просмотров: 15


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)