Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Application non-Gaussian probability distributions to describe the properties of high-strength fibers

https://doi.org/10.26896/1028-6861-2025-91-6-81-88

Abstract

This article deals with the model for applying the 3-parameter Weibull distribution to describe the tensile strength of a bundle of parallel fibers (complex thread). This is important because high-strength fibers are usually produced in the form of strands rather than single fibers. For modelling the fiber bundle, fibers with a deformation diagram similar to linear were selected: carbon, glass and aramid (Kevlar-49). The test data of single carbon and glass fibers were obtained by F. Mesquita and colleagues, and the authors’ data obtained from tests of single Kevlar-49 fibers were used to model the aramid fiber bundle. The test data of single fibers of different types were divided into equal ranges of destructive stress and the number of fibers whose strength fell within a given range of values was calculated. The use of a 2-parameter Weibull distribution to predict the strength of reinforced plastics suggests the possibility of accumulation of breaks from the very beginning of deformation, which further leads to the prediction of the appearance of a cluster of fiber breaks of infinite size in the composite under any load, which contradicts observations. It is shown that the 3-parameter distribution better describes the results obtained, and does not require the assumption of fiber destruction at zero voltage. It was found that in the case of glass fibers, destruction begins almost from the start of loading, and the two-parameter Weibull distribution describes their destruction well.

About the Authors

P. V. Mikheev
Scientific and Educational Center «Digital high-speed Transport Systems», Russian Open Academy of Transport (RUT/MIIT), 9, ul. Obraztsova, Moscow, 127055, Russia
Russian Federation

Petr V. Mikheev



A. K. Lebedev
Project Management Center MSTU «Stankin», 1, Vadkovsky per., Moscow, 127055, Russia
Russian Federation

Alexander K. Lebedev



L. R. Borisova
Financial University under the Government of the Russian Federation, 49, Leningradsky pr., Moscow, 125993, Russia
Russian Federation

Ludmila R. Borisova



References

1. Matthews F., Rawlings R. Composite materials. Mechanics and technology. — Moscow: Tekhnosfera, 2004. — 408 p. [Russian translation].

2. Mikhaylin Yu. A. Fibrous polymer composite materials in engineering. — St. Petersburg: TsOP «Professiya», 2013. — 720 p. [in Russian].

3. Vasiliev V. V., Morozov E. Advanced mechanics of composite materials and structural elements. 3rd Edition. — Elsevier, 2013. — 816 p.

4. Mikheev P. V., Mostovoy T. E., Stepashkin A. A., et al. Methodological challenges in accounting for test conditions when determining the static elastic modulus of advanced aramid structural fibers / Fibre Chem. 2024. Vol. 55. No. 5. P. 328 – 333. DOI: 10.1007/s10692-024-10485-3

5. Dalinkevich A. A., Gumargalieva K. Z., Marakhovsky S. S., Soukhanov A. V. Modern basalt fibrous materials and basalt fiber-based polymeric composites / Journal of Natural Fibers. 2009. Vol. 6. No. 3. P. 248 – 271. DOI: 10.1080/15440470903123173

6. Bazhenov S. L., Mikheev P. V., Berlin A. A., et al. The effect of the dispersion of the strength of the threads on the strength of the bundle of organic fibers / Dokl. AN SSSR. 1984. Vol. 277. No. 1. P. 107 – 111 [in Russian].

7. Panin S. V., Bogdanov A. A., Lyubutin P. S., et al. Optical method for assessing degradation of properties of polymer composites reinforced with carbon fibers under cyclic loading / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 1. P. 46 – 55 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-46-55

8. Matvienko Yu. G., Reznikov D. O., Kuzmin D. A., Potapov V. V. Estimation of the probability of fatigue failure of structural elements taking into account the spread of initial crack sizes under deterministic and random loading / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 10. P. 44 – 53 [in Russian]. DOI: 10.26896/1028-6861-2021-87-10-44-53

9. Lepikhin A. M., Makhutov N. A., Shokin Yu. I. Probabilistic multiscale modeling of destruction of structurally inhomogeneous materials and structures / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 7. P. 45 – 54 [in Russian]. DOI: 10.26896/1028-6861-2020-86-7-45-54

10. Orlov A. I. Probability and applied statistics: Basic facts. — Moscow: Knorus, 2014. — 191 p. [in Russian].

11. Orlov A. I. Probabilistic statistical data models are the basis of applied statistics methods / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 7. P. 5 – 6 [in Russian]. DOI: 10.26896/1028-6861-2020-86-7-5-6

12. Nemets Ya., Serensen S. V., Strelyaev V. S. Strength of plastics. — Moscow: Mashinostroenie, 1970. — 335 p. [in Russian].

13. Parthasarathy T. A. Extraction of Weibull parameters of fiber strength from means and standard deviations of failure loads and fiber diameters / J. Am. Ceram. Soc. 2001. Vol. 84. No. 5. P. 588 – 592. DOI: 10.1111/j.1151-2916.2001.tb00703.x

14. Mirajkar R. M., Kore B. G. Weibull parameters estimation for brittle materials / International Journal of Scientific and Innovative Mathematical Research (IJSIMR). 2015. Vol. 3. No. 7. P. 739 – 744.

15. Argon A. Statistical aspects of destruction. Composite materials. Vol. 5. Destruction and fatigue. — Moscow: Mir, 1978. — 484 p. [Russian translation].

16. Ermolenko A. F. Model of destruction of unidirectional fiber reinforced plastic with elastic matrix / Mekh. Kompozit. Mater. 1985. No. 2. P. 247 – 256 [in Russian].

17. Fuji T., Jaco M. Mechanics of destruction of composite materials. — Moscow: Mir, 1982. — 232 p. [Russian translation].

18. Kopyev I. M., Ovchinsky A. S. Destruction of fiber-reinforced metals. — Moscow: Nauka, 1977. — 240 p. [in Russian].

19. Harikrishnan R., Mohite P. M., Upadhyay C. S. Generalized Weibull model-based statistical tensile strength of carbon fibres / Arch. Appl. Mech. 2018. Vol. 88. No. 9. P. 1617 – 1636. DOI: 10.1007/s00419-018-1391-9

20. Watanabe J., Tanaka F., Okuda H., Okabe T. Tensile strength distribution of carbon fibers at short gauge lengths / Adv. Compos. Mater. 2014. Vol. 23. P. 535 – 540. DOI: 10.1080/09243046.2014.915120

21. Daniels H. E. The statistical theory of strengyh of bundles of threads / Proc. Roy. Soc. London. 1945. A183. P. 404 – 435.

22. Rabotnov Yu. N. Mechanics of a deformable solid. — Moscow: Nauka, 1979. — 744 p. [in Russian].

23. Alexandrova V. E., Lomakina O. G. Large-scale effect in unidirectional composites / Izv. AN SSSR. Mekh. Tv. Tela. 1974. No. 1. P. 143 – 147 [in Russian].

24. Lomakina O. G. Realization of fiber strength in unidirectional composites / Mashinovedenie. 1975. No. 2. P. 52 – 58 [in Russian].

25. Berger M. H., Jeulin D. Statistical analysis of the failure stresses of ceramic fibres: Dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density / J. Mater Sci. Materials Science, Engineering. 2003. Vol. 38. P. 2913 – 2923. DOI: 10.1023/a:1024405123420

26. Mesquita F., Bucknell S., Leray Y., et al. Large datasets of single carbon and glass fibre mechanical properties obtained with automated testing equipment / Composites Part A: Applied Science and Manufacturing (data in Brief). 2021. Vol. 36. No. 6. P. 107085. DOI: 10.1016/j.compositesa.2021.106389

27. Bartenev G. M., Zelenev Yu. V. Physics and Mechanics of Polymers. — Moscow: Vysshaya shkola, 1983. — 392 p. [in Russian].

28. Boyko Yu. M., Marikhin V. A., Moskalyuk O. A., Myasnikova L. P. Features of statistical strength distributions of mono- and polyfilament ultra-oriented high-strength fibers of ultrahigh molecular weight polyethylene / Fiz. Tv. Tela. 2020. Vol. 62. No. 4. P. 7 – 14 [in Russian]. DOI: 10.21883/ftt.2020.04.49125.637

29. Ding J., Chen G., Huang W., et al. Tensile strength statistics and fracture mechanism of ultrahigh molecular weight polyethylene fibers: On the Weibull distribution / ACS Omega. 2024. Vol. 9. No. 11. P. 12984 – 12991. DOI: 10.1021/acsomega.3c09230

30. Orlov A. I. On the requirements for statistical methods of data analysis (summary article) / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 11. P. 98 – 106 [in Russian]. DOI: 10.26896/1028-6861-2023-89-11-98-106


Review

For citations:


Mikheev P.V., Lebedev A.K., Borisova L.R. Application non-Gaussian probability distributions to describe the properties of high-strength fibers. Industrial laboratory. Diagnostics of materials. 2025;91(6):81-88. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-6-81-88

Views: 14


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)