Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Calculation of extended uncertainty of sulfur determination results in iron ore raw materials using Monte Carlo method

https://doi.org/10.26896/1028-6861-2025-91-7-22-29

Abstract

According to the requirements of GOST ISO/IEC 17025–2019, accredited laboratories must use methods that have previously been validated or verified and calculate the extended uncertainty of measurement results in order to obtain reliable results of analysis. The extended uncertainty of the results of the iodometric determination of sulfur in accordance with GOST 32599.2–2013 was calculated using the numerical Monte Carlo method for the implementation of the described technique in laboratory practice. Using the Ishikawa diagram, sources of uncertainty were identified (repeatability, sampling, determination of the volume and concentration of the titrant solution, recalculation of the mass fraction of sulfur into its mass fraction in dry matter) and the contribution of each of them to the extended uncertainty of the result of determining sulfur in the range of 0.1 – 0.2% was quantified. The values of all uncertainty contributions were entered into an electronic MS Excel spreadsheet, and the analysis result and its extended uncertainty were calculated using created data arrays. The described calculation method is less laborious in comparison with the analytical one, and it can be used in any field where it is necessary to assess the reliability of measurement results.

About the Authors

Anastasia V. Sergeeva
Kombinat KMAruda JSC
Russian Federation

Anastasia V. Sergeeva,

2, Artema ul., Gubkin, Belgorod oblast’, 309182.



Tatiana G. Yurakova
V. G. Shukhov Belgorod State Technological University
Russian Federation

Tatiana G. Yurakova,

46, ul. Kostyukova, Belgorod, 308012.



References

1. Kirillov V. I. Metrological support of technical systems. — Moscow: INFRA-M, 2013. — 700 p. [in Russian].

2. Golubkova E. V., Komina I. G., Chikantseva E. I. Validation and verification of measurement methods: opinions and views / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 2. Part II. P. 77 – 80 [in Russian]. DOI: 10.26896/1028-6861-2023-89-2-II-77-80

3. Okrepilov V. V., Antokhina Yu. A., Ovodenko A. A., et al. Fundamentals of Metrology. — St. Petersburg: GUAP, 2020. — 479 p. [in Russian].

4. Dyakova N. A., Gaponov S. P., Slivkin A. I. Development and validation of express procedure for isolation and quantitative determination of water-soluble polysaccharides from high devisil roots / Khimiya Rastit. Syr’ya. 2021. No. 1. P. 63 – 70 [in Russian]. DOI: 10.14258/jcprm.2021017363

5. Valiakhmetova E. N., Sosedkova O. S., Khuzagaleeva R. K., Kolpakova E. K. Digitalization. Weekdays of accredited conformity assessment body / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 2. Part II. P. 81 – 86 [in Russian]. DOI: 10.26896/1028-6861-2023-89-2-II-81-86

6. Eurachem / Citac Guide. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1_RU.pdf (accessed 04.08.2024) [in Russian].

7. Staroverova A. V., Tokmachev M. G., Gagarin A. N., Ferapontov N. B. Determination of the error of measurements obtained by the optical micrometry / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 6. P. 42 – 50 [in Russian]. DOI: 10.26896/1028-6861-2023-89-6-42-50

8. Karachevtsev F. N., Letov A. F., Slavin A. V. Uncertainty of the measurements results of the chemical composition and its methods assessment / Tr. VIAM. 2021. No. 8. P. 84 – 91 [in Russian]. DOI: 10.18577/2307-6046-2021-0-8-84-91

9. Voronova T. S., Piltsov M. V., Borisov A. D. Example of estimation of measurement uncertainty / Vestn. Astrakhan. Gos. Tekhn. Univ. 2023. No. 17. P. 180 – 183 [in Russian].

10. Warsza Z. L. Evaluation of the type a uncertainty in measurements with autocorrelated observations / Élektrotekhn. Komp’ut. Sist. 2012. No. 6. P. 9 – 13 [in Russian].

11. Zakharov I. P. Analysis of numerical methods for estimating uncertainty in measurements / Vestn. NTUKhPI. Ser. Inform. Model. 2006. No. 40. P. 96 – 100 [in Russian].

12. Savelova T. I. Monte Carlo method. — Moscow: NIYaU MEPhI, 2011. — 152 p. [in Russian].

13. Mukhamedzhanova O. G., Demidov D. G., Rekus I. G., Komarova L. Yu. Methodology for uncertainty of resilience to stretching in a curve of concrete prisms / Izv. Tul. Gos. Univ. Tekhn. Nauki. 2021. No. 2. P. 542 – 547 [in Russian].

14. Chunovkina A. G. Evaluation of measurement uncertainty at establishing metrological traceability of results of clinical studies of biological samples / Laboratory Service. 2020. No. 3. P. 32 – 40 [in Russian]. DOI: 10.17116/labs2020903132

15. Tikhomirova T. V., Smirnov A. V., Parfenova D. A., Maslova D. A. Monte Carlo method / Colloquium-Journal. 2019. No. 15 – 9. P. 122 – 125 [in Russian].

16. Frolov S. V. Analysis of uncertainty and error of results in measurement of physical and mechanical parameters of materials / Inzh.-Tekhnol. Vestn. 2021. No. 4. P. 155 – 161 [in Russian].

17. Kashnikova A. P., Belyaeva M. B. The Monte Carlo method in the tasks of modeling processes and systems / Modern Sci. 2021. Nos. 1 – 2. P. 358 – 362 [in Russian].

18. Barinova V. A. Application of the Ishikawa diagram for domain research / Teor. Prakt. Sovr. Nauki. 2019. No. 1. P. 132 – 134 [in Russian].

19. Knyaziuk N. F., Kasyanova A. D. Application of the cause and effect diagram by Ishikawa in a multidiscipline hospital to assess the level of quality and safety of medical performance / Menedzh. Kach. Med. 2021. No. 1. P. 32 – 38 [in Russian].

20. Kaye G. W., Laby T. H. Tables of physical and chemical constants. — London – New York – Toronto: Longmans, Green & Co., 1962. — 78 p.


Review

For citations:


Sergeeva A.V., Yurakova T.G. Calculation of extended uncertainty of sulfur determination results in iron ore raw materials using Monte Carlo method. Industrial laboratory. Diagnostics of materials. 2025;91(7):22-29. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-7-22-29

Views: 29


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)