Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of the crystal structure of hexagonal isotropic polycrystalline ferrites SrFe12О19 obtained by radiation-thermal sintering

https://doi.org/10.26896/1028-6861-2025-91-7-30-36

Abstract

The functional characteristics of strontium hexagonal ferrites, widely used in instrument making, depend significantly on the technology of their production. The paper presents the results of studying the crystal structure of hexagonal isotropic polycrystalline ferrites SrFe12O19. The samples were obtained by radiation-thermal sintering (RTS) in a fast electron beam of the ILU-6 electron accelerator. The phase composition and crystal lattice parameters of the samples were controlled by X-ray diffractometry, the X-ray spectra were recorded on a DRON-8 diffractometer using CoKα1 radiation, the density of the objects of study was determined on a UW620H electronic balance. It was found that the obtained single-phase samples are characterized by the P63/mmc space group (corresponding to the structure of hexagonal ferrite). For the synthesized samples, the dependences of the unit cell parameters and volume on the temperature and duration of sintering are given. The multidirectional nature of the change in the parameters of the crystal lattice is revealed, which indicates anisotropic distortion of the unit cell. It is shown that in RTS the sintering temperature plays a much greater role than the sintering time. The results obtained can be used to improve microwave electronics and terahertz photonics devices.

About the Authors

Vladimir G. Kostishin
National Research Technological University MISIS
Russian Federation

Vladimir G. Kostishin,

4, str. 1, Leninsky prosp., Moscow, 119049.



Alexey V. Trukhanov
National Research Technological University MISIS
Russian Federation

Alexey V. Trukhanov,

4, str. 1, Leninsky prosp., Moscow, 119049.



Albert A. Alekseev
Shokin NPP «Istok»
Russian Federation

Albert A. Alekseev,

2a, Vokzalnaya ul., Fryazino, Moscow obl., 141190.



Sergey V. Shcherbakov
Shokin NPP «Istok»
Russian Federation

Sergey V. Shcherbakov,

2a, Vokzalnaya ul., Fryazino, Moscow obl., 141190.



Alexey G. Nalogin
Shokin NPP «Istok»
Russian Federation

Alexey G. Nalogin,

2a, Vokzalnaya ul., Fryazino, Moscow obl., 141190.



Andrey Yu. Mironovich
National Research Technological University MISIS
Russian Federation

Andrey Yu. Mironovich,

4, str. 1, Leninsky prosp., Moscow, 119049.



Igor M. Isaev
National Research Technological University MISIS
Russian Federation

Igor M. Isaev,

4, str. 1, Leninsky prosp., Moscow, 119049.



Mikhail V. Korobeinikov
Budker Institute of Nuclear Physics SB RAS
Russian Federation

Mikhail V. Korobeinikov,

11, prosp. Akad. Lavrenteva, Novosibirsk, 630090.



Mikhail A. Mikhailenko
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Russian Federation

Mikhail A. Mikhailenko,

18, ul. Kutateladze, Novosibirsk, 630090



Maxim A. Sysoev
National Research Technological University MISIS
Russian Federation

Maxim A. Sysoev,

4, str. 1, Leninsky prosp., Moscow, 119049.



Georgy A. Skorlupin
National Research Technological University MISIS
Russian Federation

Georgy A. Skorlupin,

4, str. 1, Leninsky prosp., Moscow, 119049.



Boris M. Skibo
National Research Technological University MISIS
Russian Federation

Boris M. Skibo,

4, str. 1, Leninsky prosp., Moscow, 119049.



Georgy M. Tokin
National Research Technological University MISIS; Shokin NPP «Istok»
Russian Federation

Georgy M. Tokin,

4, str. 1, Leninsky prosp., Moscow, 119049;

2a, Vokzalnaya ul., Fryazino, Moscow obl., 141190.



References

1. Letyuk L. M., Kostishin V. G., Gonchar A. V. Technology of ferrite materials for magnetoelectronics. — Moscow: MISIS, 2005. — 352 p. [in Russian].

2. Altman A. B., Gerber A. N., Gladyshev P. A., et al. Permanent magnets. — Moscow: Énergiya, 1980. — 488 p. [in Russian].

3. Ustinov A., Kochemasov V., Khasyanova E. Ferrite materials for microwave electronics devices. Main selection criteria / Élektronika NTB. 2015. No. 8(00148). P. 86 – 92 [in Russian].

4. Shalaby M., Peccianti M., Ozturk Ya., Morandotti R. A magnetic non-reciprocal isolator for broadband teraherz operation / Nature Communications. 2013. Vol. 4(1). No. 1558. P. 1 – 7. DOI: 10.1038/ncomms2572

5. Pullar R. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics / Prog. Mater. Sci. 2012. Vol. 57. No. 7. P. 1191 – 1334. DOI: 10.1016/j.pmatsci.2012.04.001

6. Harris V. G. Modern Microwave Ferrites / IEEE Transactions on Magnetics. 2012. Vol. 48. No. 3. P. 1075 – 1104. DOI: 10.1109/tmag.2011.2180732

7. Kostishyn V., Isaev I., Scherbakov S., et al. Obtaining anisotropic hexaferrites for the base layers of microstrip SHF devices by the radiation-thermal sintering / Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5. No. 8(83). P. 32 – 39 [in Russian]. DOI: 10.15587/1729-4061.2016.80070

8. Kostishyn V. G., Nalogin A. G., Scherbakov S. V., et al. Magnetic properties of polycrystalline Y3Fe5O12 obtained by radiation-thermal sintering / Izv. YuZGU. 2018. Vol. 8. No. 1(26). P. 124 – 133 [in Russian].

9. Vasendina E. A. Study of magnetic properties of lithium-substituted ferrospinels synthesized in an electron beam / Sovr. Probl. Nauki Obraz. 2013. No. 5. P. 129 – 134 [in Russian].

10. Auslender V. L., Bryazgin A. A., Voronin L. A., et al. ILU series pulsed high-frequency linear electron accelerators / Nauka — proizvodstvu. 2003. No. 7. P. 11 – 17 [in Russian].

11. Isaev I. M., Shcherbakov S. V., Kostishin V. G., et al. Features of the crystal structure and texture of isotropic and anisotropic polycrystalline hexagonal ferrites BaFe12O19 obtained by radiation-thermal sintering / Izv. Vuzov. 2017. Vol. 20. No. 3. P. 220 – 224 [in Russian]. DOI: 10.17073/1609-3577-2017-3-220-234

12. Lysenko E. N., Surzhikov A. R., Vlasov V. A., et al. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating / Materials Science. 2017. Vol. 392. P. 1 – 7. DOI: 10.1016/j.nimb.2016.11.042

13. Surzhikov A. P., Pritulov A. M., Lysenko E. N., et al. Kinetic analysis of radiation-thermal synthesis of lithium-zinc ferrites / Sovr. Probl. Nauki Obraz. 2012. No. 3. P. 412 [in Russian].

14. Surzhikov A. P., Pritulov A. M., Lysenko E. N., et al. Study of the synthesis of lithium ferrites by thermal analysis / XIX International Conf. «Radiation Physics of Solids»: coll. works. — Moscow: PMT, 2009. P. 193 – 199 [in Russian].

15. Surzhikov A., Lysenko E., Vlasov V., Vasendina E. Solid-state synthesis of lithium-zinc ferrites by a high-energy electron beam heating / 7th International Forum on Strategic Technology (IFOST): coll. works. — Tomsk: TPU, 2012. DOI: 10.1109/ifost.2012.6357503

16. Mironovich A. Yu., Kostishin V. G., Al-Khafaji H., et al. Study of magnetic and structural properties of BaFe12 – xCuxO19 ferrites obtained by hydrothermal synthesis / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 9. P. 39 – 47 [in Russian]. DOI: 10.26896/1028-6861-2024-90-9-39-47

17. Kostishin V. G., Vergazov R. M., Menshova S. B., et al. Effect of alloying additives on the magnetic and permittivity of spinel ferrites / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 1. P. 30 – 34 [in Russian]. DOI: 10.26896/1028-6861-2021-87-1-30-34


Review

For citations:


Kostishin V.G., Trukhanov A.V., Alekseev A.A., Shcherbakov S.V., Nalogin A.G., Mironovich A.Yu., Isaev I.M., Korobeinikov M.V., Mikhailenko M.A., Sysoev M.A., Skorlupin G.A., Skibo B.M., Tokin G.M. Research of the crystal structure of hexagonal isotropic polycrystalline ferrites SrFe12О19 obtained by radiation-thermal sintering. Industrial laboratory. Diagnostics of materials. 2025;91(7):30-36. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-7-30-36

Views: 21


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)