

Research of polymer composite fiberglass rebar cured using the microwave method
https://doi.org/10.26896/1028-6861-2025-91-7-46-53
Abstract
Modern production requires new technological solutions that meet the requirements of environmental safety, saving energy resources while increasing the efficiency of technological processes. The paper presents the results of a study of the polymer composite materials in the form of fiberglass rebar curing with the use of a microwave unit. Microwave technologies were used for the polymer composite materials curing (at the electromagnetic field oscillation frequency of 2450 MHz), thermosetting epoxy resins and glass fibers were used as binders and fillers. A uniform temperature distribution over the volume of polymer composite materials in the form of rods (of 20 and 40 mm diameters) was formed using the microwave installation electrodynamic systems. It is shown that the microwave radiation energy as a heat source makes it possible to realize a qualitatively new level of polymer composite materials production, characterized by the ability to produce products with higher physical and mechanical characteristics. In addition, microwave installations significantly save energy consumption compared to traditional installations for the fiberglass rebar production. The calculation of microwave installation parameters and fiberglass rebar heat treatment technological modes are presented as well as data on the temperature distribution over the rods cross-section. The obtained results can be used in technological production processes of the polymer composite rod materials heat treatment.
About the Authors
Alexander V. MamontovRussian Federation
Alexander V. Mamontov,
53, ul. Shcherbakovskaya, Moscow, 105187.
Vladimir N. Nefedov
Russian Federation
Vladimir N. Nefedov,
53, ul. Shcherbakovskaya, Moscow, 105187.
Sergei A. Khritkin
Russian Federation
Sergei A. Khritkin,
53, ul. Shcherbakovskaya, Moscow, 105187.
References
1. Blaznov A. N., Volkov Yu. P., Lugovoy A. N., et al. On the chemical resistance of fiberglass reinforcement / Proekt. Stroit. Sibiri. 2003. No. 3. P. 34 – 37 [in Russian].
2. Kerber M. L., Vinogradov V. M., Golovkin G. S. Polymer Composite Materials: Structure, Properties, Technology. — St. Petersburg: Professiya, 2008. — 560 p. [in Russian].
3. Perepelkin K. E. Reinforcing fibers and fibrous polymer composites. — Moscow: Nauchnye osnovy i tekhnologii, 2009. — 379 p. [in Russian].
4. Khamidullin O. L., Madiyarova G. M., Bubnov D. A., et al. Control of the parameters of thermosetting binders directly during the molding of products made of polymer composite materials / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 10. P. 39 – 45 [in Russian]. DOI: 10.26896/1028-6861-2024-90-10-39-45
5. Blaznov A. N., Markin V. B., Savin V. F., et al. The Method of Studying the Durability of Fiberglass Construction Reinforcement / Um. Kompozity Stroit. 2021. Vol. 2. No. 3. P. 32 – 45 [in Russian]. DOI: 10.52957/27821919_2021_3_32
6. Mamontov A. V., Nefedov V. N., Nazarov I. V., et al. Microwave technologies. — Moscow: MIEM, 2008. — 306 p. [in Russian].
7. Devyatkin I. I., Ivanov M. A., Kiryushin V. P. Slow-Wave Systems for Microwave Heating of Dielectric Rods / Élektron. Tekhn. Ser. Élektron. SVCh. 1972. No. 5. P. 106 – 111 [in Russian].
8. Arkhangelskiy Yu. S., Devyatkin I. I. Microwave Heating Units for Intensification of Technological Processes. — Saratov: Saratovsky universitet, 1983. — 140 p. [in Russian].
9. Mordasov S. A., Negulyaeva A. P., Chernyshov V. N. Control of the Thermophysical Characteristics of Building Materials by the Adaptive Method Using Microwave Heating / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 2. P. 30 – 36 [in Russian]. DOI: 10.26896/1028-6861-2020-86-2-30-36
10. Krylov V. P., Grachev V. A., Rogov D. A. Measurements of Dielectric Permeability of Silicon Dioxide at a Superhigh Frequency upon Heating in a High Temperature Waveguide Resonator / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 10. P. 39 – 43 [in Russian].
11. Wei J., Hawley M., Delong J., et al. Comparison of Microwave and Thermal Cure of Epoxy Resins / Polymer Engineering and Science. 1993. Vol. 33. Issue 17. P. 1132 – 1140. DOI: 10.1002/pen.760331706
12. Lavrentiev V. A., Kalganova S. G. The Influence of Microwave Curing Modes on the Strength Properties of an Epoxy Compound / Problems of the Electric Power Industry. — Saratov: SGTU, 2008. P. 133 – 136 [in Russian].
13. Lavrentiev V. A., Kalganova S. G. Application of Microwave Processing Technology in the Production of Basalt Pipes / Vestn. SGTU. 2007. Vol. 29. No. 4. Issue 2. P. 23 – 25. [in Russian].
14. Rakhmankulov D. P., Bikbulatov I. Kh., Shulaev N. S., et al. Microwave Radiation and Intensification of Chemical Processes. — Moscow: Khimiya, 2003. — 220 p. [in Russian].
15. Bolasodun B., Nesbitt A., Wikinson A., et al. Effect of Curing Method on Physical and Mechanical Properties of Araldite DLS 772/4 4 DDs Epoxy System / International Journal of Scientific & Technology Research. 2013. Vol. 2. Issue 2. P. 12 – 18.
16. Hill D. J. T., George G. A., Rogers D. G. A Systematic Study of the Microwave and Thermal Cure Kinetics of the DGEBA/DDS and DGEBA/DDM Epoxy-Amine Resin Systems / Polymers for Advanced Technologies. 2002. Vol. 13. No. 5. P. 353 – 362.
17. Guzeva T. A. Hardening Of Polymer Binders with the Energy of Ultrahigh Frequency Electromagnetic Oscillations / Polymer Sci. Ser. D. 2015. Vol. 8. No. 1. P. 59 – 61. DOI: 10.1134/S1995421215010050
18. Rani M., Zafar S. Future Trends of Microwave Processing in Composite Industries / Composite Materials Processing Using Microwave Heating Technology. Composites Science and Technology. — Singapore: Springer, 2024. P. 265 – 285. DOI: 10.1007/978-981-97-2772-8_13
19. Dasari S., Rangapuram M., Fashanu O., et al. Manufacturing and Experimental Evaluation of Microwave Cured Carbon/Epoxy Composites / Applied Composite Materials. 2021. Vol. 28. P. 2087 – 2103. DOI: 10.1007/s10443-021-09974-z
20. Badshah H., Kumar R., Kumar P., et al. Cure Kinetic Modelling and Experimental Analysis to Predict Temperature Distribution during Microwave Curing of Carbon Fiber Composites / Applied Composite Materials. 2024. Vol. 31. P. 1741 – 1766. DOI: 10.1007/s10443-024-10257-6
21. Guan C., Zhan L., Zhang D., et al. Microwave Uniformity Regulation and Its Influence on Temperature Field Distribution of Composite Materials / J. Cent. South Univ. 2023. Vol. 30. P. 3374 – 3394. DOI: 10.1007/s11771-023-5458-6
22. Zhu X., Chen K., Gao L., et al. Microwave Heating and Curing of Joined Carbon Fiber Composites / JOM. 2024. Vol. 76. No. 8. DOI: 10.1007/s11837-024-06629-9
23. Yang L., Jiao M., Li N., et al. Preparation and Microwave Curing of Blended Phenolic Epoxy Fibers / Polymer Science, Series B. 2023. Vol. 65. No. 6. P. 792 – 802. DOI: 10.1134/S1560090423600286
24. Zlobina I. V., Bekrenev N. V., Morozov B. B., et al. Preparation and Microwave Temperature Effect of Microwave Heating of Cured Structural Epoxy-Carbon Filled Plastic on Interlayer Shear Stresses / Inorg. Mater. Appl. Res. 2024. Vol. 15. No. 4. P. 1043 – 1049. DOI: 10.1134/S2075113324700588
25. Nefedov V. N., Afanas’ev V. V., Ryabikina I. G. Heat Treatment of Polymer Composite Materials Using Microwave Radiation / International Conference on Actual Problems of Electron Devices Engineering (APEDE): coll. of works. — Saratov: SGTU, 2018. Vol. 1. P. 371 – 375. DOI: 10.1109/APEDE.2018.8542211
26. Nefedov V. N. Measurement of the Temperature of Dielectric Rods in Heat Treatment in Microwave Devices with Longitudinal Interaction / Measurement Techniques. 2019. Vol. 62. P. 449 – 454. DOI: 10.1007/s11018-019-01644-8
27. Mamontov A. V., Nefedov V. N., Khritkin S. A. A Study of the Temperature Distribution in a Polymer-Composite Rod When Heat-Treated with Microwave Radiation / Measurement Techniques. 2019. Vol. 62. P. 365 – 370. DOI: 10.1007/s11018-019-01631-z
28. Lebedev I. V. Microwave Equipment and Devices. Vol. 1. — Moscow: Vysshaya Shkola, 1970. — 289 p. [in Russian].
29. Grigoriev A. D. Electrodynamics and Microwave Technology. — Moscow: Lan’, 2007. — 704 p. [in Russian].
Review
For citations:
Mamontov A.V., Nefedov V.N., Khritkin S.A. Research of polymer composite fiberglass rebar cured using the microwave method. Industrial laboratory. Diagnostics of materials. 2025;91(7):46-53. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-7-46-53