

Extract of oak bark as a selective natural reagent for the spectrophotometric determination of iron (II) in pharmaceutical preparations and blood serum
https://doi.org/10.26896/1028-6861-2025-91-9-5-18
Аннотация
Spectrophotometry is widely favored for iron detection due to its simplicity, speed, cost-effectiveness, and versatility. Conventional methods rely on synthetic chromogenic reagents, which often involve toxic chemicals, hazardous solvents, and significant waste generation. Natural plant extracts offer a sustainable solution, being less toxic, easier to prepare, and more environmentally benign than synthetic counterparts. This study introduces a simple, green, and cost-effective spectrophotometric method for iron determination using oak bark extract as a natural, selective reagent. The approach relies on the development of a reddish-brown colored complex (ëmax = 550 nm) when iron ions react with oak bark extract in a neutral acetate buffer solution (pH 7.0). Under optimized conditions, the assay demonstrated excellent linearity in the range of concentrations 0.56 – 5.6 ìg/mL (R2 = 0.998) with high molar absorption coefficient (0.55 × 104 L/mol/cm), good sensitivity (LOD = 57.4 ng/mL, LOQ = 191.5 ng/mL), and precision (RSD < 5%). Statistical validation through t-test and F-test comparisons with 1,10-phenanthroline method confirmed the accuracy and reliability of the proposed method at 95% confidence levels. The assay showed remarkable selectivity for Fe (II) against various interfering cations. The proposed method was successfully applied for iron determination in blood serum and various pharmaceutical preparations, with a high recovery rate ranging from 98.01 to 103.38%.
Ключевые слова
Об авторах
A. M. SaudСирия
Ali M. Saud
Lattakia
M. Issam
Сирия
Issam Mohamad
Lattakia
T. A. Sayed-Hamoud
Сирия
Tasneem A. Sayed-Hamoud
Lattakia
V. I. Vasil’eva
Россия
Vera I. Vasil’eva
1, Universitetskaya pl., Voronezh, 394018
Список литературы
1. Taylor K. G., Konhauser K. O. Iron in earth surface systems: a major player in chemical and biological processes / Elements. 2011. Vol. 7. P. 83 – 88. DOI: 10.2113/gselements.7.2.83
2. Möhring H. C., Brecher C., Abele E., et al. Materials in machine tool structures / CIRP Ann. 2015. Vol. 64. P. 725 – 748. DOI: 10.1016/j.cirp.2015.05.005
3. Guðmundsson S., Bäckvall J.-E. On the use of iron in organic chemistry / Molecules. 2020. Vol. 25. 1349. DOI: 10.3390/molecules25061349
4. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health / J. Res. Med. Sci. 2014. Vol. 19. P. 164 – 174.
5. Gozzelino R., Arosio P. Iron homeostasis in health and disease / Int. J. Mol. Sci. 2016. Vol. 17. 130. DOI: 10.3390/ijms17010130
6. Sousa L., Oliveira M. M., Pessôa M. T. C., Barbosa L. A. Iron overload: Effects on cellular biochemistry / Clin. Chim. Acta. 2020. Vol. 504. P. 180 – 189. DOI: 10.1016/j.cca.2019.11.029
7. Hsu M. Y., Mina E., Roetto A., Porporato P. E. Iron: an essential element of cancer metabolism / Cells. 2020. Vol. 9. 2591. DOI: 10.3390/cells9122591
8. Li M., Cao R., Nilghaz A., et al. “Periodic-Table-style” paper device for monitoring heavy metals in water / Anal. Chem. 2015. Vol. 87. P. 2555 – 2559. DOI: 10.1021/acs.analchem.5b00040
9. World Health Organization. Guidelines for drinking-water quality. 2nd edition. — Geneva, 2003.
10. Powers J. M., Buchanan G. R., Adix L., et al. Effect of low-dose ferrous sulfate vs iron polysaccharide complex on hemoglobin concentration in young children with nutritional iron-deficiency anemia: a randomized clinical trial / JAMA. 2017. Vol. 317. P. 2297 – 2304. DOI: 10.1001/jama.2017.6846
11. Abbas M., Abdelbadee S. A., Alanwar A., Mostafa S. Efficacy of ferrous bis-glycinate versus ferrous glycine sulfate in the treatment of iron deficiency anemia with pregnancy: a randomized double-blind clinical trial / J. Matern.-Fetal Neonat. Med. 2019. Vol. 32. P. 4139 – 4145. DOI: 10.1080/14767058.2018.1482871
12. Gómez-Nieto B., Gismera M. J., Sevilla M. T., Procopio J. R. Simultaneous and direct determination of iron and nickel in biological solid samples by high-resolution continuum source graphite furnace atomic absorption spectrometry / Talanta. 2013. Vol. 116. P. 860 – 865. DOI: 10.1016/j.talanta.2013.07.083
13. Fakayode S. O., King A. G., Yakubu M., et al. Determination of Fe content of some food items by flame atomic absorption spectroscopy (FAAS): a guided-inquiry learning experience in instrumental analysis laboratory / J. Chem. Educ. 2012. Vol. 89. P. 109 – 113. DOI: 10.1021/ed1011585
14. Bok-Badura J., Jakóbik-Kolon A., Turek M., et al. A versatile method for direct determination of iron content in multi-wall carbon nanotubes by inductively coupled plasma atomic emission spectrometry with slurry sample introduction / RSC Adv. 2015. Vol. 5. P. 101634 – 101640. DOI: 10.1039/c5ra22269a
15. Dadi M., Yasir M. Spectroscopy and Spectrophotometry: principles and applications for colorimetric and related other analysis / Colorimetry. Ashis Kumar Samanta, Ed. — 2022. Vol. 81. DOI: 10.5772/intechopen.101106
16. Devi V. A., Reddy V. K. Spectrophotometric determination of iron (II) and cobalt (II) by direct, derivative, and simultaneous methods using 2-hydroxy-1-naphthaldehyde-P-hydroxybenzoichydrazone / Int. J. Anal. Chem. 2012. Vol. 2012. 981758. DOI: 10.1155/2012/981758
17. Kuliev K. A. Dimercaptoquinoline as Analytical Reagents for Extraction-Photometric Determination of Iron (III) / Industr. Lab. Mater. Diagn. 2017. Vol. 83. P. 17 – 23 [in Russian].
18. Dosovitskii A. E., Komendo I. Yu., Mikhlin A. L., et al. Photometric determination of iron and chromium impurities in high purity monopotassium phosphate at a level of 106 wt.% / Industr. Lab. Mater. Diagn. 2017. Vol. 83. P. 13 – 16 [in Russian].
19. Ratnamala P. S., Lokhande R. S., Utkarsha M. C. Development of method for extractive spectrophotometric determination of Fe (III) with 2-Hydroxy-1-Naphthalene carboxaldehyde phenyl hydrazone as an analytical reagent / Int. Lett. Chem., Phys. Astron. 2013. Vol. 9. P. 7 – 12.
20. Yan Z., Zhu Y., Xu J., et al. A novel polydentate Schiff-base derivative developed for multi-wavelength colorimetric differentiation of trace Fe2+ from Fe3+ / Anal. Methods. 2017. Vol. 9. P. 6240 – 6245. DOI: 10.1039/c7ay02167d
21. Sajid M., P³otka-Wasylka J. Green analytical chemistry metrics: A review / Talanta. 2022. Vol. 238. 123046. DOI: 10.1016/j.talanta.2021.123046
22. Mohamed Saleh A., El-Kosasy A. M., Fares N. V. UV Spectrophotometric Method Development and validation of vonoprazan fumarate in Bulk and pharmaceutical dosage form; Green Profile evaluation via Eco-scale and GAPI Tools / Egypt. J. Chem. 2023. Vol. 66. P. 141 – 148. DOI: 10.21608/ejchem.2022.161704.6948
23. Khairy M., Ismael M., El-Khatib R. M., et al. Natural betanin dye extracted from bougainvillea flowers for the nakedeye detection of copper ions in water samples / Anal. Methods. 2016. Vol. 8. P. 4977 – 4982. DOI: 10.1039/c6ay00235h
24. Boveiri Monji, Zolfonoun E., Ahmadi S. J. Application of acidic extract of Platanus orientalis tree leaves as a green reagent for selective spectrophotometric determination of zirconium / Green Chem. Lett. Rev. 2008. Vol. 1. P. 107 – 112. DOI: 10.1080/17518250802101907
25. Monji A. B., Zolfonoun E., Ahmadi S. J. Application of water extract of slippery elm tree leaves as a natural reagent for selective spectrophotometric determination of trace amounts of molybdenum (VI) in environmental water samples / Toxicol. Environ. Chem. 2009. Vol. 91. P. 1229 – 1235. DOI: 10.1080/02772240802646962
26. Monji A. B., Ahmadi S. J., Zolfonoun E. Novel method for selective spectrophotometric determination of titanium (IV) with water extract of slippery elm leaf as a new reagent / Anal. Lett. 2007. Vol. 40. P. 2384 – 2390. DOI: 10.1080/00032710701567162
27. Sulistyarti H., Nuur A. J., Cahyaningrum A., et al. Green Analytical Flow Technique for Spectrophotometric Determination of Aluminum Using Extract Flower of Red Galangal / Anal. Bioanal. Chem. Res. 2025. Vol. 12. P. 65 – 73. DOI: 10.22036/abcr.2024.469356.2141
28. Settheeworrarit T., Hartwell S. K., Lapanatnoppakhun S., et al. Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron / Talanta. 2005. Vol. 68. P. 262 – 267. DOI: 10.1016/j.talanta.2005.07.039
29. Pinyou P., Hartwell S. K., Jakmunee J., et al. Flow injection determination of iron ions with green tea extracts as a natural chromogenic reagent / Anal. Sci. 2010. Vol. 26. P. 619 – 623. DOI: 10.2116/analsci.26.619
30. Lapanantnoppakhun S., Tengjaroensakul U., Mungkornasawakul P., et al. Green analytical chemistry experiment: Quantitative analysis of iron in supplement tablets with vis spectrophotometry using tea extract as a chromogenic agent / J. Chem. Educ. 2019. Vol. 97. P. 207 – 214. DOI: 10.1021/acs.jchemed.9b00530
31. Masawat P., Yenkom T., Sitsirat C., Thongmee T. Smartphone-based digital image colorimetry for determination of iron in cereals and crispy seaweed using Terminalia chebula Retz. extract as a natural reagent / Anal. Methods. 2022. Vol. 14. P. 4321 – 4329. DOI: 10.1039/d2ay01345b
32. Kotchabhakdi N., Seanjum C., Kiwfo K., Grudpan K. A simple extract of Leucaena leucocephala (Lam.) de Wit leaf containing mimosine as a natural color reagent for iron determination / Microchem. J. 2021. Vol. 162. 105860. DOI: 10.1016/j.microc.2020.105860
33. Pan Y., Qin R., Hou M., et al. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions / Sep. Purif. Technol. 2022. Vol. 300. 121831. DOI: 10.1016/j.seppur.2022.121831
34. Lang, Y., Gao, N., Zang, Z., et al. Classification and antioxidant assays of polyphenols: A review / J. Future Foods. 2024. Vol. 4. P. 193 – 204. DOI: 10.1016/j.jfutfo.2023.07.002
35. Wang W., Cao J., Yang J., et al. Antimicrobial activity of tannic acid in vitro and its protective effect on mice against Clostridioides difficile / Microbiol. Spectr. 2023. Vol. 11. e0261822. DOI: 10.1128/spectrum.02618-22
36. Fu Z., Chen R. Study of complexes of tannic acid with Fe (III) and Fe (II) / J. Anal. Methods Chem. 2019. Vol. 2019. 3894571. DOI: 10.1155/2019/3894571
37. Sousa V., Ferreira J. P., Miranda I., et al. Quercus rotundifolia bark as a source of polar extracts: structural and chemical characterization / Forests. 2021. Vol. 12. 1160. DOI: 10.3390/f12091160
38. Alpaslan D., Dudu T. E., Aktas N. Synthesis of poly (Oak bark) particles from oak bark extract and its utilization as a drug carrier material / Vietnam J. Chem. 2023. Vol. 61. P. 719 – 731. DOI: 10.1002/vjch.202200177
39. Erdogan G., Karadag R., Dolen E. Potentiometric and spectrophotometric determination of the stability constants of quercetin (3,3,4,5,7-pentahydroxyflavone) complexes with aluminium (III) and iron (II) / Rev. Anal. Chem. 2005. Vol. 24. No. 4. P. 247 – 261.
40. Ryan P., Hynes M. J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron (III) / J. Inorg. Biochem. 2007. Vol. 101. P. 585 – 593. DOI: 10.1016/j.jinorgbio.2006.12.001
41. Hider R. C., Liu Z. D., Khodr H. H. Metal chelation of polyphenols / Methods Enzymol. 2001. Vol. 335. P. 190 – 203. DOI: 10.1016/s0076-6879(01)35243-6
42. Perron N. R., Brumaghim J. L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding / Cell Biochem. Biophys. 2009. Vol. 53. P. 75 – 100. DOI: 10.1007/s12013-009-9043-x
43. Espina A., Cañamares M. V., Jurasekova Z., SanchezCortes S. Analysis of iron complexes of tannic acid and other related polyphenols as revealed by spectroscopic techniques: Implications in the identification and characterization of iron gall inks in historical manuscripts / ACS Omega. 2022. Vol. 7. P. 27937 – 27949. DOI: 10.1021/acsomega.2c01679
44. Sungur ª., Uzar A. Investigation of complexes tannic acid and myricetin with Fe (III) / Spectrochim. Acta, Part A. 2008. Vol. 69. P. 225 – 229. DOI: 10.1016/j.saa.2007.03.038
45. Yýldýz M., Sahiner N. Tannic acid for simple and highly selective visual detection of iron (II) and (III) ions from different aqueous environments / Water, Air, Soil Pollut. 2021. Vol. 232. 201. DOI: 10.1007/s11270-021-05116-0
46. Ponhong K., Siriangkhawut W., Lee C. Y., et al. Dual determination of nitrite and iron by a single greener sequential injection spectrophotometric system employing a simple single aqueous extract from Areca catechu Linn. serving as a natural reagent / RSC Adv. 2022. Vol. 12. P. 20110 – 20121. DOI: 10.1039/d2ra03870f
47. Jaikrajang N., Kruanetr S., Harding D. J., Rattanakit P. A simple flow injection spectrophotometric procedure for iron (III) determination using Phyllanthus emblica Linn. as a natural reagent / Spectrochim. Acta, Part A. 2018. Vol. 204. P. 726 – 734. DOI: 10.1016/j.saa.2018.06.109
48. Ganranoo L., Chokchaisiri R., Grudpan K. Simple simultaneous determination of iron and manganese by sequential injection spectrophotometry using astilbin extracted from Smilax china L. root / Talanta. 2019. Vol. 191. P. 307 – 312. DOI: 10.1016/j.talanta.2018.08.076
49. Supharoek S. A., Weerasuk B., Siriangkhawut W., et al. Ultrasound-assisted one-pot cloud point extraction for Iron determination using natural chelating ligands from Dipterocarpus intricatus Dyer fruit / Molecules. 2022. Vol. 27. 5697. DOI: 10.3390/molecules27175697
50. Shivasekar M., Vm V., Kumar R. Study of serum ferritin in smokers / Asian J. Pharm. Clin. Res. 2018. Vol. 11. No. 1. P. 374 – 375.
51. Najim S. S. Determination of iron in human serum samples of Thalassaemia patients by flame atomic absorption / J. Basrah Res. (Sci.). 2014. Vol. 40. P. 1.
Рецензия
Для цитирования:
Saud A., Issam M., Sayed-Hamoud T., Vasil’eva V.I. Extract of oak bark as a selective natural reagent for the spectrophotometric determination of iron (II) in pharmaceutical preparations and blood serum. Заводская лаборатория. Диагностика материалов. 2025;91(9):5-18. https://doi.org/10.26896/1028-6861-2025-91-9-5-18
For citation:
A. M. S., Issam M., Sayed-Hamoud T., Vasil’eva V.I. Extract of oak bark as a selective natural reagent for the spectrophotometric determination of iron (II) in pharmaceutical preparations and blood serum. Industrial laboratory. Diagnostics of materials. 2025;91(9):5-18. https://doi.org/10.26896/1028-6861-2025-91-9-5-18