Determination of sulfur in corrosion products by X-ray fluorescence analysis as a method of assessing the integrity of oil refinery equipment
https://doi.org/10.26896/1028-6861-2025-91-10-5-13
Abstract
The analytical capabilities of wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) for determination of total sulfur content in corrosion deposits formed on oil refinery and petrochemical processing equipment are evaluated to prevent equipment failures. Deposit samples collected from diverse process equipment exposed to corrosive environments have been analyzed. The total sulfur content was determined using the standard-free method of fundamental parameters and calibration dependences plotted at the reference samples analysis using regression models. Samples of corrosion deposits of technological equipment containing iron sulfides and sulfates were taken as reference materials. The sulfur content in them was determined gravimetrically. A preliminary study was conducted to estimate the influence of other sample components on the results of sulfur determination. It was found that when plotting calibration dependences, it is necessary to take into account not only the concentration of Fe (matrix), but also the other significant elements such as Ca. For the correct sulfur determination its prevalent valence form should be also considered: sulfate form is confirmed by the satellite SKβ’ peak in XRF spectrum. The developed technique allows the express monitoring of equipment at oil and gas facilities predicting remaining service life, and evaluating operational risks.
About the Authors
A. Yu. IvanchenkoRussian Federation
Alina Yu. Ivanchenko.
98b, prosp. im. V. I. Lenina, Volgograd, 400078
S. S. Rodin
Russian Federation
Sergey S. Rodin.
98b, prosp. im. V. I. Lenina, Volgograd, 400078.
L. A. Pyankova
Russian Federation
Lyubov A. Pyankova.
P.O. Box 57, 30, letter A, Rizhsky prosp., St. Petersburg, 190020.
References
1. Iashchenko I. G., Peremitina T. O., Luchkova S. V. Investigation of physical and chemical properties of sulphurous oils using factor analysis and principal components analysis / Russian Oil Gas Geol. 2016. No. 4. P. 70 – 76 [in Russian].
2. Lukashov S. V., Putsko T. V., Nozdracheva E. V. Optimization of the method for quantitative determination of hydrogen sulphide in oil / Int. Sci. J. 2024. No. 4. P. 142 – 149 [in Russian]. DOI: 10.23670/irj.2024.142.149
3. Lisovskii N. N., Khalimov E. M. On the classification of hard-to-recover reserves / Vest. TsKR Rosnedra. 2009. No. 6. P. 33 – 35 [in Russian].
4. Snigir D. N. Retrospective analysis of the causes of accidents on the main pipeline / Mezhdunar. Zh. Gum. Estestv. Nauk. 2024. No. 12-3. P. 203 – 207 [in Russian]. DOI: 10.24412/2500-1000-2024-12-3-203-207
5. Lysova V. N., Khaibulov R. A. Compilation of data on optimizing tubular furnaces operation / Neftegaz. Tekhnol. Ékol. Bezopasnost’. 2023. No. 3. P. 7 – 14 [in Russian]. DOI: 10.24143/18120-9498-2023-3-7-14
6. Safronova E. V., Spiridonov A. V., Molotok E. V., Trus V. A. Computer simulation and optimization of heat transfer processes in ansys software using the example of heat exchanger installation AVT-2 JSC «NAFTAN» / Vest. Polotsk. Gos. Univ. Ser. B. Prom. Prikl. Nauki. 2024. No. 1. P. 95 – 100 [in Russian]. DOI: 10.52928/2070-1616-2024-49-1-95-100
7. Tangiev M. M., Nazarov V. P. Premaintenance works at tanks complicated by pyrophoric sediments / Fires Emerg. 2024. No. 3. P. 52 – 57 [in Russian]. DOI: 10.25257/fe.2024.3.52-57
8. Pakhomova M. I., Lozinskii A. V., Efimov V. N., Kuchin D. P. Solving the problems of high-temperature sulphurous corrosion in primary oil refining units / Usp. Khimii Khim. Tekhnol. 2021. Vol. 35. No. 5. P. 131 – 134 [in Russian].
9. Pankov A. N. Analysis of the quality of information automated enterprise management systems in the oil refining industry / Vestn. RINKh. 2012. No. 4(40). P. 128 – 133 [in Russian].
10. Kreknin Yu. S., Safonov L. A. X-ray spectral analysis of wear products of gas turbine engines by the method of fundamental parameters / Industr. Lab. Mater. Diagn. 2007. Vol. 73. No. 4. P. 12 – 15 [in Russian].
11. Ravshanov M. I., Aronbaev D. M., Aronbaev S. D. A critical review of standard methods for the determination of sulfur in petroleum products and motor fuels / Universum: Khim. Biol. 2024. No. 9(123). P. 49 – 70 [in Russian]. DOI: 10.32743/unichem.2024.123.9.18161
12. Gorshkov A. A., Avdin V. V., Uchaev D. A., et al. Physico-chemical characteristics of Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 nanocomposites synthesized by the hydrothermal peroxide method / Vest. YuUrGU. Ser. Khimiya. 2023. Vol. 15. No. 4. P. 139 – 148 [in Russian]. DOI: 10.14529/chem230405
13. Chubarov V. M. X-ray fluorescence determination of sulfur valence state in Au-containing ores / Vopr. Estestvozn. 2015. No. 2(6). P. 73 – 76 [in Russian].
14. Sanchez E., Torres Deluigi M., Castellano G. Binding effects in sulfur Kα and Kβ X-ray emission spectra / J. Anal. At. Spectrom. 2019. Vol. 34. No. 2. P. 274 – 283. DOI: 10.1039/c8ja00345a
15. Pyankova L. A., Levanova O. V., Antonova A. A., Bukin K. V. Determination of sulfur oxidation state in gold ores by the WDXRF spectrometer Spektroskan Maks-GVM / Proc. of XX Int. Meeting on Crystal Chemistry, X-ray Diffraction and Spectroscopy of Minerals. St. Petersburg, 2024. P. 134 [in Russian].
16. Kuzmina T. G., Khokhlova I. V., Romashova T. V., Troneva M. A. The practice of using various methods of sample preparation for the X-ray fluorescence determination of macroelements in geological rocks, soils and sediments / Industr. Lab. Mater. Diagn. 2025. Vol. 91. No. 1. P. 15 – 23 [in Russian]. DOI: 10.26896/1028-6861-2025-91-15-23
17. Finkel’shtein A. L., Sycheva V. I., Chubarov V. M., et al. X-ray fluorescence determination of major elements in powder chromium ore samples prepared as pressed pellets / Zh. SFU. Ser. Khimiya. 2023. No. 1. P. 116 – 126 [in Russian].
Review
For citations:
Ivanchenko A.Yu., Rodin S.S., Pyankova L.A. Determination of sulfur in corrosion products by X-ray fluorescence analysis as a method of assessing the integrity of oil refinery equipment. Industrial laboratory. Diagnostics of materials. 2025;91(10):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-5-13






























