Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diagnostics of rolling bearing defects using envelope spectrum analysis of vibration and acoustic signals

https://doi.org/10.26896/1028-6861-2025-91-10-50-58

Abstract

The method of spectral analysis of the envelope of high-frequency vibration signal components is used to identify defects and assess the condition of rolling bearings. The disadvantage of this approach is the high loss of useful signal as the vibration transducer moves away from the product being diagnosed. The paper presents the results of the diagnosis of rolling bearing defects using the analysis of the envelope spectrum of the acoustic pressure signal obtained using measuring microphones. The vibration and acoustic radiation of a serviceable support bearing and a bearing with a defect artificially applied to its inner race were analyzed. It is shown that the identification of rolling bearing defects by acoustic pressure signals has limitations due to the fact that sound reflection, background noise and interference can mask useful signals. The presence of random spatial noise leads to a low signal-to-noise ratio, however, microphones located close to the damaged bearing make it possible to determine the presence of a defect and its type. The obtained results can be used to improve the methods of diagnostics and monitoring of the technical condition of rolling bearings.

About the Authors

I. V. Khramtsov
Perm National Research Polytechnic University
Russian Federation

Igor V. Khramtsov.

29, Komsomolsky prosp., Perm, 614990.



M. M. Shobei
Perm National Research Polytechnic University
Russian Federation

Maksim M. Shobei.

29, Komsomolsky prosp., Perm, 614990.



I. A. Sudakov
Perm National Research Polytechnic University
Russian Federation

Igor A. Sudakov.

29, Komsomolsky prosp., Perm, 614990.



V. V. Ershov
Perm National Research Polytechnic University
Russian Federation

Viktor V. Ershov.

29, Komsomolsky prosp., Perm, 614990.



S. V. Panin
Institute of Strength Physics and Materials Science, SB RAS
Russian Federation

Sergey V. Panin.

2/4, Akademichesky prosp., Tomsk, 634055.



References

1. Klyuev V. V., Artemiev B. V., Matveev V. I. Update status and development of the methods for technical diagnostics / Industr. Lab. Mater. Diagn. 2015. Vol. 81. No. 4. P. 73 – 78 [in Russian].

2. Burda E. A., Zusman G. V., Kudryavtseva I. S., et al. An overview of vibration analysis techniques for the fault diagnostics of rolling bearings in machinery / Shock and vibration. 2022. No. 1. P. 1 – 14. DOI: 10.1155/2022/6136231

3. Klyuev V. V., Sosnin F. R., Kovalev A. V., et al. Non-destructive testing and diagnostics: reference book. — Moscow: Mashinostroenie, 2005. — 656 p. [in Russian].

4. Adamenko V., Zhemanyuk P., Karasev V., et al. Vibration diagnostics of aircraft engine bearings / Sovr. Tekhnol. Avtomat. 1998. No. 1. P. 98 – 101 [in Russian].

5. Zubko A. I. Perspective vibroacoustics diagnostic complex for aircraft gas-turbine engines bearing assemblies / Vestn. MAI. 2016. No. 1. P. 47 – 55 [in Russian].

6. Balitskiy F. Ya., Ivanova M. A., Sokolova A. G. Vibroacoustic diagnostics of incipient defects. — Moscow: Nauka, 1984. — 120 p. [in Russian].

7. Rusov V. O. Spectral vibration diagnostics. — St. Petersburg: Vibrotsentr, 1996. — 128 p. [in Russian].

8. Kamnev V. A. Analysis of the results of diagnostics of rolling bearings motor-spindle unit with the help of the developed information-measuring system / Vestn. MGTU «Stankin». 2013. No. 4. P. 58 – 60 [in Russian].

9. Biryukov R. V., Kiselev Yu. V. Vibration diagnostics of gas-turbine engines rotor bearings using the cold cranking / Izv. Samar. NTs RAN. 2016. No. 1. P. 153 – 157 [in Russian].

10. Zvonarev S. L., Potapov A. Yu. Vibrations diagnostic AI-222-25 jet engine in manufacturing experience for identifying bearing defects / Vestn. MAI. 2011. No. 1. P. 75 – 80 [in Russian].

11. Kozochkin M. P., Sabirov F. S., Bogan A. N., et al. Diagnostics of rolling-element bearings during machine operation based on vibration signal analysis / STIN. 2013. No. 1. P. 21 – 25 [in Russian].

12. Kozochkin M. P., Sabirov F. S., Molodtsov V. V. Diagnostics of the state of machines by vibration characteristics / Materials. Technologies. Design. 2020. No. 1. P. 66 – 77 [in Russian].

13. Koshekov K. T., Klikushin Yu. N., Kobenko V. Yu., et al. Testing a pump unit by identification measurements of vibration signals / Defektoskopiya. 2016. No. 5. P. 36 – 43 [in Russian].

14. Palchik K. B., Kruglova I. M., Ogurtsov D. V., et al. Assessment of the state of rolling bearings by vibration spec / Ékspl. Mor. Transp. 2022. No. 2. P. 117 – 122 [in Russian]. DOI: 10.34046/aumsuomt103/23

15. Silaev B. M., Barmanov I. S., Danilenko P. A. Predicting the propagation of damage in roller bearings of aircraft engines by vibration analysis / Trenie Iznos. 2016. No. 4. P. 496 – 501 [in Russian].

16. Sundukov A. E., Sundukov E. V. Analysis of vibrational state of rolling contact bearings during their runout / Vestn. SNIU. 2006. Vol. 5. No. 2 – 1. P. 85 – 89 [in Russian].

17. Balyaba M. V., Kryuchkov A. N., Ermilov M. A., et al. Analysis of the vibration state of rolling bearings with the defect «wear of the inner bearing cage» / Dinam. Vibroakust. 2021. Vol. 7. No. 1. P. 6 – 14 [in Russian]. DOI: 10.18287/2409-4579-2021-7-1-6-14

18. Wang Y., Yang H., Zhao S., et al. Vibration characterization of rolling bearings with compound fault features under multiple interference factors / PLOS One. 2024. Vol. 19. No. 2. P. 1 – 19. DOI: 10.1371/journal.pone.0297935

19. Kutalek D., Hammer M. Vibration diagnostics of rolling bearings using the time series analysis / MM Science Journal. 2015. P. 717 – 721. DOI: 10.17973/mmsj.2015_12_201548

20. Lukyanov A. V. Classifier of vibroacoustic signs of failures of centrifugal machinery. — Irkutsk: INIKIKhM, 1999. — 195 p. [in Russian].

21. Shirman A. R., Soloviev A. B. Practical vibration diagnostics and monitoring of mechanical equipment. — Moscow: Nauka, 1996. — 276 p. [in Russian].

22. Adamczak S., Wrzochal M., Durakbasa N. Evaluation of a non-contact method for measuring vibration of rolling bearings in industrial conditions / Mechanic NR. 2020. P. 8 – 11. DOI: 10.17814/mechanik.2020.2.5

23. Wrzochal M. New method of metrological evaluation of industrial rolling bearing vibration measurement systems / Int. J. Adv. Manufact. Technol. 2023. Vol. 124. P. 587 – 600. DOI: 10.21203/rs.3.rs-1787445/v1

24. Dzwonkowski A., Swedrowski L. Motor bearing diagnostics performed by means of laser vibrometerment systems / Proceedings of the 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives. — Bologna, Italy, 2011. P. 482 – 486. DOI: 10.1109/demped.2011.6063667

25. Freitas C., Cuenca J., Morais P., et al. Comparison of vibration and acoustic measurements for detection of bearing defects / Proceedings of ISMA 2016. — Leuven, Belgium, 2016. P. 2423 – 2436.

26. Kostyukov V. N., Naumenko A. P. Standardization in the sphere of vibrodiagnostic monitoring of piston compressors / Procedia Engineering. 2015. Vol. 113. P. 370 – 380. DOI: 10.1016/j.proeng.2015.07.290

27. Kostek R., Żółtowski B. Rolling bearing defect detection and diagnostics / Vibroenginereeng procedia. 2015. Vol. 6. P. 139 – 144.

28. Panov A. N., Bodrov E. E., Lysenko A. A., et al. Diagnostics of electric drive by its acoustic vibration using a condenser microphone / Élektrotekhn. Sist. Kompl. 2019. No. 4. P. 58 – 63 [in Russian]. DOI: 10.18503/2311-8318-2019-4(45)-58-63

29. Orman M., Rzeszucinski P., Tkaczyk A., et al. Bearing fault detection with the use of acoustic signals recorded by a hand-held mobile phone / Proceedings of the 2nd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). — Bengaluru, India. IEEE. 2015. P. 252 – 256. DOI: 10.1109/catcon.2015.7449545

30. Mauricio A., Denayer H., Gryllias K. Time-domain beamformed envelope spectrum of acoustic signals for bearing diagnostics / Proceedings of ISMA 2022. — Leuven, Belgium, 2022. P. 582 – 591.

31. Wu X., Zegers J., Denayer H., Gryllias K. Acoustic monitoring of rolling element bearings using a sparse microphone array / Proceedings of SURVISHNO 2023. — Toulouse, France. 2023. P. 1 – 14.

32. Wang R., Liu F., Hou F., et al. A non-contact fault diagnosis method for rolling bearings based on acoustic imaging and convolutional neural networks / IEEE Access. 2020. Vol. 8. P. 132761 – 132774. DOI: 10.1109/access.2020.3010272

33. Li C., Chen C., Gu X. Acoustic-based rolling bearing fault diagnosis using a Co-prime circular microphone array / Sensors. 2023. Vol. 23. No. 6. P. 1 – 16. DOI: 10.3390/s23063050

34. Kopiev V. F., Palchikovskiy V. V., Belyaev I. V., et al. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters / Acoust. Phys. 2017. Vol. 63. No. 1. P. 113 – 124. DOI: 10.1134/s1063771017010043

35. Barkov A. V., Barkova N. A. Azovtsev A. Yu. Monitoring and diagnosis of rotating machines by vibration. — St. Petersburg: SPbGMTU, 2000. — 159 p. [in Russian].

36. Randall R. B. Vibration-based condition monitoring: industrial, automotive and aerospace applications. — Chichester: John Wiley & Sons, 2011. — 289 p. DOI: 10.1002/9780470977668


Review

For citations:


Khramtsov I.V., Shobei M.M., Sudakov I.A., Ershov V.V., Panin S.V. Diagnostics of rolling bearing defects using envelope spectrum analysis of vibration and acoustic signals. Industrial laboratory. Diagnostics of materials. 2025;91(10):50-58. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-50-58

Views: 86


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)