Study of viscoelastic properties of frost-resistant rubbers
https://doi.org/10.26896/1028-6861-2025-91-10-88-92
Abstract
The standard method of dynamic mechanical analysis used for determining the viscoelastic properties of highly elastic materials. The method involves testing bulk samples of a certain shape and size. We present the results of a study of the viscoelastic properties of nitrile butadiene rubbers using the dynamic mechanical analysis (nanoDMA) method. A new experimental installation for nanodynamic testing of frost-resistant rubbers in the temperature range from –60 to 60°C was used. The applied technique included studying samples in a local near-surface region. For testing by the nanoDMA method, the required parameters were set in the software of the indenting module: load, frequency and amplitude of indenter oscillations, test duration. The module allows to install an indenter of different geometry and material. It was found that at low temperatures close to the glass transition temperature, a sharp change in the properties of rubbers occurs. Temperature dependences of the elastic modulus at frequencies of 0.1, 0.2, 0.5, 1, 6, and 30 Hz showed a significant change in the properties of samples at temperatures of about –40°C. The proposed experimental installation can be used for quality control of products, for example, in the form of rings intended for tribological testing.
About the Authors
K. S. KravchukRussian Federation
Konstantin S. Kravchuk.
7A, Tsentralnaya ul., Troitsk, Moscow, 108840;
101, korp. 1, prosp. Vernadskogo, Moscow, 119526;
4/1, str. 6, Kaluzhskoe sh., Troitsk, Moscow, 108840.
G. Kh. Sultanova
Russian Federation
Gulnaz Kh. Sultanova.
7A, Tsentralnaya ul., Troitsk, Moscow, 108840;
101, korp. 1, prosp. Vernadskogo, Moscow, 119526;
9, Institutsky per., Dolgoprudny, Moscow obl., 141701.
References
1. Petrova N. N., Timofeeva E. N., Mukhin V. V., et al. Analysis of elastomer performance in cold climates and off-road vehicles full-scale tests / ICIE. 2024. P. 602 – 613. DOI: 10.1007/978-3-031-65870-9_55
2. Pang H., Jiang T., Dai J., et al. Experimental study of the mechanical properties of full-scale rubber bearings at 23°C, 0°C, and –20°C / Polymers. 2024. Vol. 16. No. 7. P. 903. DOI: 10.3390/polym16070903
3. Villani V., Lavallata V. The theories of rubber elasticity and the goodness of their constitutive stress-strain equations / Physchem. 2024. Vol. 4. No. 3. P. 296 – 318. DOI: 10.3390/physchem4030021
4. Kurkin A. S., Kiselev A. S., Krasheninnikov S. V., Bogdanov A. A. Simulation of the deformation diagram of a viscoelastic material based on a structural model / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 6. P. 60 – 69 [in Russian]. DOI: 10.26896/1028-6861-2022-88-6-60-69
5. Bakošová D., Bakošová A. Testing of rubber composites reinforced with carbon nanotubes / Polymers. 2022. Vol. 14. No. 15. P. 3039. DOI: 10.3390/polym14153039
6. Bandyopadhyaya S., Kitey R., Upadhyay C. Effect of filler content and strain amplitude on dynamical mechanical properties of filled rubber / Mater. Today Proc. 2024. Vol. 108. P. 130 – 134. DOI: 10.1016/j.matpr.2024.01.049
7. Lindemann N., Schawe J., Lacayo-Pineda J. Kinetics of the glass transition of silica-filled styrene-butadiene rubber: the effect of resins / Polymers. 2022. Vol. 14. No. 13. P. 2626. DOI: 10.3390/polym14132626
8. Venkategowda T., Manjunatha L., Anilkumar P. Dynamic mechanical behavior of natural fibers reinforced polymer matrix composites. — A review / Mater. Today Proc. 2022. Vol. 54. No. 2. P. 395 – 401. DOI: 10.1016/j.matpr.2021.09.465
9. Marzocca A. J., Mansilla M. A. Dynamic mechanical properties in natural rubber/styrene-butadiene rubber blends: the local strain behavior in the glass transition region / Polym. Eng. Sci. 2023. Vol. 63. No. 5. P. 1471 – 1480. DOI: 10.1002/pen.26298
10. Trivedi A., Whybrow R., Muhr A., Siviour C. Experimentally characterising the temperature and rate dependent behaviour of unfilled, and glass microsphere filled, natural rubber / Polymer. 2023. Vol. 270. P. 125773. DOI: 10.1016/j.polymer.2023.125773
11. Shkalei I. V., Torskaya E. V., Dyakonov A. A. Tribological properties of UHMWPE coatings on frost-resistant rubber substrate / New materials and technologies in the Arctic conditions. 2023. P. 99 – 100 [in Russian].
12. Xie X. W., Zhao Y. J., Shi J. B. Research progress of superhydrophobic coatings based on silicone rubber surface / J. Phys.: Conf. Ser. 2022. Vol. 2368. No. 1. P. 012018. DOI: 10.1088/1742-6596/2368/1/012018
13. Zhang H., Ju G., Zhou L., et al. Mechanical-robust and polymer-based superhydrophobic coating toward self-cleaning and anti-corrosion / J. Clean. Prod. 2024. Vol. 469. P. 143161. DOI: 10.1016/j.jclepro.2024.143161
14. Wang J., Zhang Y., Ding J., et al. Preparation strategy and evaluation method of durable superhydrophobic rubber composites / Adv. Colloid Interface Sci. 2022. Vol. 299. P. 102549. DOI: 10.1016/j.cis.2021.102549
15. Mohd Khairuddin F. A., Rashid A. A., Leo C. P., et al. Recent progress in superhydrophobic rubber coatings / Prog. Org. Coatings. 2022. Vol. 171. P. 107024. DOI: 10.1016/j.porgcoat.2022.107024
16. Syed Asif S. A., Wahl K. J., Colton R. J. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer / Rev. Sci. Instrum. 1999. Vol. 70. No. 5. P. 2408. DOI: 10.1063/1.1149769
17. Piacenti A., Adam C., Hawkins N., et al. Nanoscale rheology: dynamic mechanical analysis over a broad and continuous frequency range using photothermal actuation atomic force microscopy / Macromolecules. 2024. Vol. 57. No. 3. P. 1118 – 1127. DOI: 10.1021/acs.macromol.3c02052
18. Bulychev S. I., Alekhin V. P. Continuous indentation testing of materials. — Moscow: Mashinostroenie, 1990. — 224 p. [in Russian].
19. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / J. Mater. Res. 1992. Vol. 7. No. 6. P. 1564. DOI: 10.1557/jmr.1992.1564
20. Lucas B. N., Oliver W. C., Swindeman J. E. The dynamics of frequency-specific, depth-sensing indentation testing / MRS Online Proceedings Library (OPL). 1998. Vol. 522. P. 3. DOI: 10.1557/proc-522-3
21. Herbert E. G., Oliver W. C., Pharr G. M. Nanoindentation and the dynamic characterization of viscoelastic solids / J. Phys. D. Appl. Phys. 2008. Vol. 41. No. 7. P. 74021. DOI: 10.1088/0022-3727/41/7/074021
22. Gladkikh E. V., Maslenikov I. I., Reshetov V. N., Useinov A. S. Portable hardness tester for instrumental indentation / J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 2020. Vol. 14. No. 4. P. 846 – 850. DOI: 10.1134/s102745102003026x
23. Reshetov V. N., Krasnogorov I. V., Solovyov V. V., et al. Equipment for instrumented nanoindentation — principles of operation and design features / Nanoindustry. 2022. Vol. 15. Nos. 7 – 8. P. 466 – 476. DOI: 10.22184/1993-8578.2022.15.7-8.466.476
24. Morozov A. V., Kravchuk K. S. Estimation of real and imaginary modulus of elasticity of near-surface layers of frost-resistant rubber by nanoDMA indentation method / New materials and Technologies in the Arctic Conditions. 2023. P. 78 – 79 [in Russian].
Review
For citations:
Kravchuk K.S., Sultanova G.Kh. Study of viscoelastic properties of frost-resistant rubbers. Industrial laboratory. Diagnostics of materials. 2025;91(10):88-92. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-88-92






























