Application of gas chromatography-mass spectrometry for the detection of impurities in chlorogenic and caffeic acids
https://doi.org/10.26896/1028-6861-2025-91-11-5-12
Abstract
Hydroxycinnamic acids, including caffeic and chlorogenic acids, are widely found in plant extracts and demonstrate significant biological activity, making them promising for pharmaceutical and food industry applications. However, their natural origin and tendency to degrade during storage requires quality control, including the identification of impurities and degradation products. This study explores the potential of gas chromatography – mass spectrometry (GC-MS) for the analysis of pure caffeic and chlorogenic acid samples in order to detect impurities of various origins. It demonstrates that GC-MS analysis of acids without derivatization is not feasible due to the high polarity and thermal instability of the compounds under study, which leads to their decomposition under chromatography conditions. To improve volatility and thermal stability, derivatization was performed using N,O-bis(trimethylsilyl)trifluoroacetamide in the presence of trimethylchlorosilane, which increased the method’s sensitivity. Mass spectral analysis of the derivatized samples, supported by library searches, revealed the presence of various cinnamic acid derivatives, as well as an unidentified peak, presumably corresponding to the trimethylsilyl derivative of trihydroxycinnamic acid. The results demonstrate the effectiveness of GC-MS with prior derivatization for the detailed analysis of pure hydroxycinnamic acids and confirm its suitability for quality control and stability studies of these compounds.
About the Authors
T. D. KsenofontovaRussian Federation
Tatyana D. Ksenofontova
31, Leninsky prosp., Moscow, 119991;
4, Leninsky prosp., Moscow, 119049
V. B. Baranovskaia
Russian Federation
Vasilisa B. Baranovskaia
31, Leninsky prosp., Moscow, 119991;
4, Leninsky prosp., Moscow, 119049
References
1. Saricaoglu B., Gültekin Subaşı B., Karbancioglu-Guler F., et al. Phenolic compounds as natural microbial toxin detoxifying agents / Toxicon. 2023. Vol. 222. 106989. DOI: 10.1016/j.toxicon.2022.106989
2. Sharifi-Rad J., Seidel V., Izabela M., et al. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy / Cell Commun. Signal. 2023. Vol. 21. P. 89. DOI: 10.1186/s12964-023-01109-0
3. De Araújo F. F., De Paulo Farias D., Neri-Numa I. A., Pastore G. M. Polyphenols and their applications: an approach in food chemistry and innovation potential / Food Chem. 2021. Vol. 338. 127535. DOI: 10.1016/j.foodchem.2020.127535
4. Albuquerque B. R., Heleno S. A., Oliveira M. B. P. P., et al. Phenolic compounds: current industrial applications, limitations and future challenges / Food Funct. 2021. Vol. 12. No. 1. P. 14 – 29. DOI: 10.1039/d0fo02324h
5. De Armas-Ricard M., Ruiz-Reyes E., Ramírez-Rodríguez O. Caffeates and caffeamides: synthetic methodologies and their antioxidant properties / Int. J. Med. Chem. 2019. 2592609. DOI: 10.1155/2019/2592609
6. Yu H., Yang J., Ding J., et al. Stability study and identification of degradation products of caffeoylgluconic acid derivatives from Fructus euodiae / Molecules. 2018. Vol. 23. No. 8. 1975. DOI: 10.3390/molecules23081975
7. Razboršek M. I., Ivanović M., Kolar M. Validated stability-indicating GC-MS method for characterization of forced degradation products of trans-caffeic acid and trans-ferulic acid / Molecules. 2021. Vol. 26. 2475. DOI: 10.3390/molecules26092475
8. Pearson J. L., Lee S., Suresh H., et al. The liquid chromatographic determination of chlorogenic and caffeic acids in Xu Duan (Dipsacus asperoides) raw herb / Int. Schol. Res. Notices. 2014. P. 968314. DOI: 10.1155/2014/968314
9. Yang J., Yao L., Gong K., et al. Identification and quantification of chlorogenic acids from the root bark of Acanthopanax gracilistylus by UHPLC-Q-Exactive Orbitrap mass spectrometry / ACS Omega. 2022. Vol. 7. No. 29. P. 25675 – 25685. DOI: 10.1021/acsomega.2c02899
10. Kompantseva E. V., Ayrapetova A. Yu., Saushkina A. S. Spectrophotometric determination of hydroxycinnamic acids in herbal drugs. Part 1. Direct spectrophotometry (review) / Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2024. Vol. 14. No. 2. P. 181 – 195 [in Russian]. DOI: 10.30895/1991-2919-2024-14-2-181-195
11. Santanatoglia A., Angeloni S., Fiorito M., et al. Development of new analytical methods for the quantification of organic acids, chlorogenic acids and caffeine in espresso coffee / J. Food Compos. Anal. 2024. Vol. 125. 105732. DOI: 10.1016/j.jfca.2023.105732
12. Deineka V. I., Oleinits E. Y., Deineka L. A. Simultaneous determination of monocaffeoylquinic acids and caffeine by reverse-phase high-performance liquid chromatography with eluents based on propanol-2 and ethyl acetate (rejection of acetonitrile) / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 11. P. 14 – 21 [in Russian]. DOI: 10.26896/1028-6861-2022-88-11-14-21
13. Kompantseva E. V., Slivkin A. I. High performance liquid chromatography in the quantitative analysis of hydroxycinnamic acids in plants growing in the Russian Federation / Sorb. Khromatogr. Prots. 2023. Vol. 23. No. 2. P. 255 – 268 [in Russian]. DOI: 10.17308/sorpchrom.2023.23/11149
14. Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling / Curr. Protoc. Mol. Biol. 2016. Vol. 114. P. 30.4.1 – 30.4.32. DOI: 10.1002/0471142727.mb3004s114
15. Lingwan M., Masakapalli S. K. A robust method of extraction and GC-MS analysis of monophenols exhibited UV-B mediated accumulation in Arabidopsis / Physiol. Mol. Biol. Plants. 2022. Vol. 28. P. 533 – 543. DOI: 10.1007/s12298-022-01150-2
16. Proestos C., Sereli D., Komaitis M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS / Food Chem. 2006. Vol. 95. No. 1. P. 44 – 52. DOI: 10.1016/j.foodchem.2004.12.016
17. Proestos C., Komaitis M. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC coupled to diode array detector (DAD) and GC-MS after silylation / Foods. 2013. Vol. 2. P. 90 – 99. DOI: 10.3390/foods2010090
18. Schummer C., Delhomme O., Appenzeller B. M., et al. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis / Talanta. 2009. Vol. 77. No. 4. P. 1473 – 1482. DOI: 10.1016/j.talanta.2008.09.043
19. Mallouchos A., Lagos G., Komaitis M. A rapid microwave-assisted derivatization process for the determination of phenolic acids in brewer’s spent grains / Food Chem. 2007. Vol. 102. No. 3. P. 606 – 611. DOI: 10.1016/j.foodchem.2006.05.040
20. Li F., Liu Q., Cai W., et al. Analysis of scopoletin and caffeic acid in tobacco by GC-MS after a rapid derivatization procedure / Chromatographia. 2009. Vol. 69. P. 743 – 748. DOI: 10.1365/s10337-008-0938-2
21. Ma Y., Wang X., Nie X., et al. Microbial degradation of chlorogenic acid by a Sphingomonas sp. strain / Appl. Biochem. Biotechnol. 2016. Vol. 179. P. 1381 – 1392. DOI: 10.1007/s12010-016-2071-2
22. Ksenofontova T. D., Baranovskaya V. B. Chlorogenic and caffeic acids: applications and methods of determination / Analitika. 2024. Vol. 14. No. 4. P. 312 – 321 [in Russian]. DOI: 10.22184/2227-572x.2024.14.4.312.321
23. Le Person A., Lacoste A.-S., Cornard J.-P. Photo-degradation of trans-caffeic acid in aqueous solution and influence of complexation by metal ions / J. Photochem. Photobiol. A. 2013. Vol. 265. P. 10 – 19. DOI: 10.1016/j.jphotochem.2013.05.004
24. Harvey D. J., Vouros P. Mass spectrometric fragmentation of trimethylsilyl and related alkylsilyl derivatives / Mass Spectrom. Rev. 2020. Vol. 39. P. 105 – 211. DOI: 10.1002/mas.21590
25. Narita Y., Inouye K. Degradation kinetics of chlorogenic acid at various pH values and effects of ascorbic acid and epigallocatechin gallate on its stability under alkaline conditions / J. Agric. Food Chem. 2013. Vol. 61. No. 4. P. 966 – 972. DOI: 10.1021/jf304105.
26. Xie C., Yu K., Zhong D., Yuan T., et al. Investigation of isomeric transformations of chlorogenic acid in buffers and biological matrixes by ultraperformance liquid chromatography coupled with hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight mass spectrometry / J. Agric. Food Chem. 2011. Vol. 59. No. 20. P. 11078 – 11087. DOI: 10.1021/jf203104k
27. Dawidowicz A. L., Typek R. The influence of pH on the thermal stability of 5-O-caffeoylquinic acids in aqueous solutions / Eur. Food Res. Technol. 2011. Vol. 233. P. 223 – 232. DOI: 10.1007/s00217-011-1513-x
Review
For citations:
Ksenofontova T.D., Baranovskaia V.B. Application of gas chromatography-mass spectrometry for the detection of impurities in chlorogenic and caffeic acids. Industrial laboratory. Diagnostics of materials. 2025;91(11):5-12. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-5-12






























