Niobium and tantalum speciation by X-ray fluorescence spectra using the wavelength spectrometer «Spectroscan max-GVM»
https://doi.org/10.26896/1028-6861-2025-91-11-34-40
Abstract
The possibility of determining the speciation of tantalum and niobium in various compounds (metallic Ta and Nb, TaH, NbH, Ta2O5, and Nb2O5) using the ratio of the intensities of the characteristic emission lines of these elements was investigated. The «Spectroscan Max-GVM» commercial medium-resolution X-ray fluorescence spectrometer was used for experiment. Tantalum L-series lines in the range of 1000 – 1450 mÅ and niobium L-series lines (5000 – 5400 mÅ) were used to calculate the relative integral intensity. Since the difference in the ratios of characteristic emission lines intensities for different element speciation are small, special attention was paid to spectra processing for selection of smoothed line intensities in the spectral ranges chosen. The proposed approach allowed to distinguish Ta compounds using both the intensity ratios of high-lying/low-lying transitions and two low-lying transitions. It was also possible to distinguish all three of Ta speciation forms using the ratio of the most intense (Lβ2,15/Lβ1) lines of the L-series. In the case of Nb, it was possible to distinguish the oxide from the pure metal and its hydride by the ratio of NbLγ1 and NbLβ3,4 intensities, however the proposed approad didn’t allow to distinguish the metal from its hydride. The proposed spectral recording mode is compatible with the mode used in the standard X-ray fluorescence analysis scheme, which, in principle, allows the determination of the elemental composition and form of presence of analytes in a single experiment.
About the Authors
T. F. AkhmetzhanovRussian Federation
Timur F. Akhmetzhanov
31, Leninsky prosp., Moscow, 119071
G E. Marina
Russian Federation
Galina E. Marina
31, Leninsky prosp., Moscow, 119071
L Yu. Mezevaja
Russian Federation
Lilija Yu. Mezevaja
4, Leninsky prosp., Moscow, 119049
M. N. Filippov
Russian Federation
Mikhail N. Filippov
31, Leninsky prosp., Moscow, 119071;
4, Leninsky prosp., Moscow, 119049
References
1. Vainshtein E. E. X-ray spectra of atoms in molecules of chemical compounds and alloys. — Moscow: Izd. AN SSSR, 1950. — 206 p. [in Russian].
2. Blokhin M. A. Physics of X-rays. — Moscow: Gos. Izd. Tekhn. Teor. Liter., 1957. — 518 p. [in Russian].
3. Meisel A., Leonhardt G., Szargan R. Röntgenspektren und Chemische Bindung. — Leipzig: Akademische Verlagsgesellschaft Geest u. Portig, 1977. — 319 s. [in German].
4. Mazalov L. N. X-ray spectra. — Novosibirsk: Izd. Inst. Neorg. Khimii SO RAN, 2003. — 328 p. [in Russian].
5. Sumbaev O. M., Petrovich E. V., Smirnov Yu. P., et al. Use of a method of small X-ray line shifts to investigate the electronic structure of crystal chemical bonds / Sov. Phys. Usp. 1974. Vol. 17. P. 463 – 464. DOI: 10.1070/pu1974v017n03abeh004102
6. Sumbaev O. M. Shift of K X-ray lines associated with valency change and with isomorphous phase transitions in rare earths / Sov. Phys. Usp. 1978. Vol. 21. P. 141 – 154. DOI: 10.1070/pu1978v021n02abeh005519
7. Ovsyannikova I. F., Kupriyanova T. A., Goldenberg G. I. Determination of valency states and coordination of the atoms from the last emission line in X-ray spectrum / Indusr. Lab. 1987. Vol. 53. No. 6. P. 529 – 532 [in Russian].
8. Filippov M. N., Kupriyanova T. F., Lyamina O. I. Simultaneous determination of the concentration of elements and their speciation in solid samples using X-ray fluorescence spectroscopy / J. Anal. Chem. 2001. Vol. 56. No. 8. P. 729 – 735. DOI: 10.1023/a:1016733626879
9. Kupriyanova T. A., Filippov M. N., Lyamina O. I. Chemical band effects on line intensities of arsenic X-ray emission spectrum / J. Struct. Chem. 2003. Vol. 44. No. 3. P. 410 – 419. DOI: 10.1023/b:jory.0000009668.66258.12
10. Rautian S. G. Real spectral apparatus / Sov. Phys. Usp. 1958. Vol. 1. P. 245 – 273. DOI: 10.1070/pu1958v001n02abeh003099
11. Porikli S. Influence of the chemical environment changes on the line shape and intensity ratio values for La, Ce and Pr L lines spectra / Chem. Phys. Lett. 2011. Vol. 508. Nos. 1 – 3. P. 165 – 170. DOI: 10.1016/j.cplett.2011.04.021
12. Sato K., Yoneda T., Izumi T., et al. Evaluation of analytical precision of polychromatic simultaneous WDXRF spectrometer and application to valence analysis of cathode materials of lithium-ion batteries / Anal. Chem. 2020. Vol. 92. No. 1. P. 758 – 765. DOI: 10.1021/acs.analchem.9b03075
13. Sato K., Nishimura A., Kaino M., Adachi S. Polychromatic simultaneous WDXRF for chemical state analysis using laboratory X-ray source / X-Ray Spectrom. 2017. Vol. 46. P. 330 – 335. DOI: 10.1002/xrs.2797
14. Chubarov V. Novel application of the X-ray fluorescence method for the determination of FeO content for reference materials characterization / Talanta. 2025. Vol. 282. 126981. DOI: 10.1016/j.talanta.2024.126981
15. Chubarov V. M. New approach for direct determination of manganese valence state in ferromanganese nodules by X-ray fluorescence spectrometry / Minerals. 2023. Vol. 13. No. 10. 1329. DOI: 10.3390/min13101329
16. Malherbe J., Claverie F. Toward chromium speciation in solids using wavelength dispersive X-ray fluorescence spectrometry CrKβ lines / Anal. Chim. Acta. 2013. Vol. 773. P. 37 – 44. DOI: 10.1016/j.aca.2013.02.035
17. Durdağı S. P. Chemical environment change analysis on L X-ray emission spectra of some lanthanide compounds / Microchem. J. 2017. Vol. 130. P. 27 – 32. DOI: 10.1016/j.microc.2016.07.025
18. Durdağı S., Taşpolat A. Determination of the chemical effect in the lanthanide group of elements using wave dispersive X-ray spectrometry / J. Phys. Chem. Funct. Mater. 2018. Vol. 1. No. 2. P. 1 – 11.
19. Durdağı S., Güzel F. Characterization of the chemical shift and asymmetry indices of praseodium, neodymium, samarium, gadolinium, and terbium compounds by wavelength dispersive X-ray fluorescence (WDXRF) / Instrum. Sci. Technol. 2023. Vol. 51. No. 2. P. 209 – 221. DOI: 10.1080/10739149.2022.2115511
20. Chubarov V. M., Finkelshtein A. L., Skornikova S. A. Determination of platinum valence state in alumina based catalysts by X-Ray fluorescence spectrometry / Spectrochim. Acta. Part B. 2023. Vol. 209. 106803. DOI: 10.1016/j.sab.2023.106803
21. Kapil A., Kailash, Rani R., et al. Study of chemical effects on L X-rays spectra of 59Pr compounds using high resolution WDXRF and EDXRF measurements / Appl. Radiat. Isot. 2024. Vol. 205. 111185. DOI: 10.1016/j.apradiso.2024.111185
22. Filippov M.N., Mezhevaja L. Yu., Baranovskaia V. B. Current trends in the application and analytical control of niobium and tantalum. Short review / Analytics. 2023. Vol. 13. No. 5. P. 366 – 378 [in Russian]. DOI: 10.22184/2227-572x.2023.13.5.366.378
23. Mezhevaja L. Yu., Filippov M. N., Lyamina O. I., et al. Express X-ray fluorescence analysis of technical-grade tantalum and niobium: from raw materials to products / Inorg. Mater. 2024. Vol. 60. P. 38 – 44. DOI: 10.1134/s0020168524700067
24. Akhmetzhanov T. F., Cherkashina T. Y., Zhilicheva A. N., et al. Total-reflection X-ray fluorescence determination of thorium and uranium in the presence of interfering elements in solid geological objects of natural and technogenic origin / J. Anal. At. Spectrom. 2023. Vol. 38. P. 2664 – 2673. DOI: 10.1039/d3ja00260h
Review
For citations:
Akhmetzhanov T.F., Marina G.E., Mezevaja L.Yu., Filippov M.N. Niobium and tantalum speciation by X-ray fluorescence spectra using the wavelength spectrometer «Spectroscan max-GVM». Industrial laboratory. Diagnostics of materials. 2025;91(11):34-40. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-34-40






























