Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Niobium and tantalum speciation by X-ray fluorescence spectra using the wavelength spectrometer «Spectroscan max-GVM»

https://doi.org/10.26896/1028-6861-2025-91-11-34-40

Abstract

The possibility of determining the speciation of tantalum and niobium in various compounds (metallic Ta and Nb, TaH, NbH, Ta2O5, and Nb2O5) using the ratio of the intensities of the characteristic emission lines of these elements was investigated. The «Spectroscan Max-GVM» commercial medium-resolution X-ray fluorescence spectrometer was used for experiment. Tantalum L-series lines in the range of 1000 – 1450 mÅ and niobium L-series lines (5000 – 5400 mÅ) were used to calculate the relative integral intensity. Since the difference in the ratios of characteristic emission lines intensities for different element speciation are small, special attention was paid to spectra processing for selection of smoothed line intensities in the spectral ranges chosen. The proposed approach allowed to distinguish Ta compounds using both the intensity ratios of high-lying/low-lying transitions and two low-lying transitions. It was also possible to distinguish all three of Ta speciation forms using the ratio of the most intense (Lβ2,15/Lβ1) lines of the L-series. In the case of Nb, it was possible to distinguish the oxide from the pure metal and its hydride by the ratio of NbLγ1 and NbLβ3,4 intensities, however the proposed approad didn’t allow to distinguish the metal from its hydride. The proposed spectral recording mode is compatible with the mode used in the standard X-ray fluorescence analysis scheme, which, in principle, allows the determination of the elemental composition and form of presence of analytes in a single experiment.

About the Authors

T. F. Akhmetzhanov
Kurnakov Institute of General and Inorganic Chemistry of the RAS
Russian Federation

Timur F. Akhmetzhanov 

31, Leninsky prosp., Moscow, 119071



G E. Marina
Kurnakov Institute of General and Inorganic Chemistry of the RAS
Russian Federation

Galina E. Marina 

31, Leninsky prosp., Moscow, 119071



L Yu. Mezevaja
National University of Science and Technology «MISIS»
Russian Federation

Lilija Yu. Mezevaja 

4, Leninsky prosp., Moscow, 119049



M. N. Filippov
Kurnakov Institute of General and Inorganic Chemistry of the RAS; National University of Science and Technology «MISIS»
Russian Federation

Mikhail N. Filippov

31, Leninsky prosp., Moscow, 119071
4, Leninsky prosp., Moscow, 119049



References

1. Vainshtein E. E. X-ray spectra of atoms in molecules of chemical compounds and alloys. — Moscow: Izd. AN SSSR, 1950. — 206 p. [in Russian].

2. Blokhin M. A. Physics of X-rays. — Moscow: Gos. Izd. Tekhn. Teor. Liter., 1957. — 518 p. [in Russian].

3. Meisel A., Leonhardt G., Szargan R. Röntgenspektren und Chemische Bindung. — Leipzig: Akademische Verlagsgesellschaft Geest u. Portig, 1977. — 319 s. [in German].

4. Mazalov L. N. X-ray spectra. — Novosibirsk: Izd. Inst. Neorg. Khimii SO RAN, 2003. — 328 p. [in Russian].

5. Sumbaev O. M., Petrovich E. V., Smirnov Yu. P., et al. Use of a method of small X-ray line shifts to investigate the electronic structure of crystal chemical bonds / Sov. Phys. Usp. 1974. Vol. 17. P. 463 – 464. DOI: 10.1070/pu1974v017n03abeh004102

6. Sumbaev O. M. Shift of K X-ray lines associated with valency change and with isomorphous phase transitions in rare earths / Sov. Phys. Usp. 1978. Vol. 21. P. 141 – 154. DOI: 10.1070/pu1978v021n02abeh005519

7. Ovsyannikova I. F., Kupriyanova T. A., Goldenberg G. I. Determination of valency states and coordination of the atoms from the last emission line in X-ray spectrum / Indusr. Lab. 1987. Vol. 53. No. 6. P. 529 – 532 [in Russian].

8. Filippov M. N., Kupriyanova T. F., Lyamina O. I. Simultaneous determination of the concentration of elements and their speciation in solid samples using X-ray fluorescence spectroscopy / J. Anal. Chem. 2001. Vol. 56. No. 8. P. 729 – 735. DOI: 10.1023/a:1016733626879

9. Kupriyanova T. A., Filippov M. N., Lyamina O. I. Chemical band effects on line intensities of arsenic X-ray emission spectrum / J. Struct. Chem. 2003. Vol. 44. No. 3. P. 410 – 419. DOI: 10.1023/b:jory.0000009668.66258.12

10. Rautian S. G. Real spectral apparatus / Sov. Phys. Usp. 1958. Vol. 1. P. 245 – 273. DOI: 10.1070/pu1958v001n02abeh003099

11. Porikli S. Influence of the chemical environment changes on the line shape and intensity ratio values for La, Ce and Pr L lines spectra / Chem. Phys. Lett. 2011. Vol. 508. Nos. 1 – 3. P. 165 – 170. DOI: 10.1016/j.cplett.2011.04.021

12. Sato K., Yoneda T., Izumi T., et al. Evaluation of analytical precision of polychromatic simultaneous WDXRF spectrometer and application to valence analysis of cathode materials of lithium-ion batteries / Anal. Chem. 2020. Vol. 92. No. 1. P. 758 – 765. DOI: 10.1021/acs.analchem.9b03075

13. Sato K., Nishimura A., Kaino M., Adachi S. Polychromatic simultaneous WDXRF for chemical state analysis using laboratory X-ray source / X-Ray Spectrom. 2017. Vol. 46. P. 330 – 335. DOI: 10.1002/xrs.2797

14. Chubarov V. Novel application of the X-ray fluorescence method for the determination of FeO content for reference materials characterization / Talanta. 2025. Vol. 282. 126981. DOI: 10.1016/j.talanta.2024.126981

15. Chubarov V. M. New approach for direct determination of manganese valence state in ferromanganese nodules by X-ray fluorescence spectrometry / Minerals. 2023. Vol. 13. No. 10. 1329. DOI: 10.3390/min13101329

16. Malherbe J., Claverie F. Toward chromium speciation in solids using wavelength dispersive X-ray fluorescence spectrometry CrKβ lines / Anal. Chim. Acta. 2013. Vol. 773. P. 37 – 44. DOI: 10.1016/j.aca.2013.02.035

17. Durdağı S. P. Chemical environment change analysis on L X-ray emission spectra of some lanthanide compounds / Microchem. J. 2017. Vol. 130. P. 27 – 32. DOI: 10.1016/j.microc.2016.07.025

18. Durdağı S., Taşpolat A. Determination of the chemical effect in the lanthanide group of elements using wave dispersive X-ray spectrometry / J. Phys. Chem. Funct. Mater. 2018. Vol. 1. No. 2. P. 1 – 11.

19. Durdağı S., Güzel F. Characterization of the chemical shift and asymmetry indices of praseodium, neodymium, samarium, gadolinium, and terbium compounds by wavelength dispersive X-ray fluorescence (WDXRF) / Instrum. Sci. Technol. 2023. Vol. 51. No. 2. P. 209 – 221. DOI: 10.1080/10739149.2022.2115511

20. Chubarov V. M., Finkelshtein A. L., Skornikova S. A. Determination of platinum valence state in alumina based catalysts by X-Ray fluorescence spectrometry / Spectrochim. Acta. Part B. 2023. Vol. 209. 106803. DOI: 10.1016/j.sab.2023.106803

21. Kapil A., Kailash, Rani R., et al. Study of chemical effects on L X-rays spectra of 59Pr compounds using high resolution WDXRF and EDXRF measurements / Appl. Radiat. Isot. 2024. Vol. 205. 111185. DOI: 10.1016/j.apradiso.2024.111185

22. Filippov M.N., Mezhevaja L. Yu., Baranovskaia V. B. Current trends in the application and analytical control of niobium and tantalum. Short review / Analytics. 2023. Vol. 13. No. 5. P. 366 – 378 [in Russian]. DOI: 10.22184/2227-572x.2023.13.5.366.378

23. Mezhevaja L. Yu., Filippov M. N., Lyamina O. I., et al. Express X-ray fluorescence analysis of technical-grade tantalum and niobium: from raw materials to products / Inorg. Mater. 2024. Vol. 60. P. 38 – 44. DOI: 10.1134/s0020168524700067

24. Akhmetzhanov T. F., Cherkashina T. Y., Zhilicheva A. N., et al. Total-reflection X-ray fluorescence determination of thorium and uranium in the presence of interfering elements in solid geological objects of natural and technogenic origin / J. Anal. At. Spectrom. 2023. Vol. 38. P. 2664 – 2673. DOI: 10.1039/d3ja00260h


Review

For citations:


Akhmetzhanov T.F., Marina G.E., Mezevaja L.Yu., Filippov M.N. Niobium and tantalum speciation by X-ray fluorescence spectra using the wavelength spectrometer «Spectroscan max-GVM». Industrial laboratory. Diagnostics of materials. 2025;91(11):34-40. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-34-40

Views: 63


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)